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Abstract-: In this paper, a mathematical model of two link flexible manipulator is presented. The 

model is prepared using Lagrangian-assumed modes method. The links are modelled as Euler-

Bernoulli beams. A literature survey containing the work done by various authors in the area of 

flexible robotics is provided. A general expression for the frequency equation for the vibrating links is 

obtained which is found to be time-dependent. The effect of payload on the natural frequencies of the 

links is studied. Simulation results are obtained using both forward and inverse dynamics. The results 

thus obtained are compared with that found in the literature.  
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INTRODUCTION 

he dynamic modelling of flexible manipulators 

becomes extremely complicated due to the 

elastic deformation of the links. In the present 

work, dynamic model of a two link flexible 

manipulator modelled as Euler-Bernoulli beam 

is obtained using the approach of Lagrangian-

assumed modes method (AMM). A short but 

conclusive literature survey regarding the work 

done by various authors in the area of flexible 

robotics was done. Benosman and Vey [1] have 

given a review of various techniques for 

modelling and control of flexible multi-body 

systems. The initial work on flexible robots 

started with manipulators having single flexible 

link modelled as Euler-Bernoulli (EB) beam. 

Assumed modes method was used to solve for 

the elastic deformation of the link. Lagrangian 

approach is the most preferred one for 

developing the mathematical model of the 

flexible manipulator system. Book et al [2] 

presented the frequency domain model and the 

time domain model of the distributed flexibility 

system. They used the linear feedback schemes 

for vibration control. 

The correct values of input torques for the 

flexible manipulator were found by Luh et al [3] 

using resolved-motion-rate-controls (feedback) 

method. Book and Majette [4], Judd and 

Falkenburg [5] and Kanoh et al [6] have 

focussed upon the design of controllers for the 

flexible manipulators besides dynamic 

modelling. Thus, it can be observed that during 

the early years between 1975 and 1986, a lot of 

work on flexible manipulators was carried out 

that involved dynamic modelling and also the 

design of controllers using conventional 

approach. Bakr and Shabana [7] developed a 

method for the dynamic analysis of 

geometrically nonlinear inertia-variant flexible 

systems using Lagrange‟s multipliers. Till now, 

the manipulators having only single flexible link 

were considered but Luca and Siciliano [8] 

derived a closed-form finite-dimensional 

dynamic model for planar multilink lightweight 

robots. Li and Sankar [9] developed systematic 

methods for efficient modelling and forward 

dynamics computation of flexible manipulators. 

DU et. al [10] focussed upon geometric non-

linearity caused by large elastic deflections of a 

flexible EB beam. Theodore and Ghosal [11] 

performed dynamic modelling of a flexible EB 

link with prismatic joint. Yuksel and Aksoy [12] 

investigated the flexural vibrations of a flexible 

T 
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linear EB beam with different base excitations. 

Ata et. al [13] highlighted the significance of 

inverse dynamic analysis for flexible 

manipulator and the effect of boundary 

conditions on the elastic deflection and the 

corresponding torques provided by the 

actuators.  

I. MATHEMATICAL MODELLING 

Mishra et al [14] have given a mathematical 

model of single link flexible manipulator. Based 

on the same approach a mathematical model of 

two link flexible manipulator having two 

revolute joints is developed. The effect of 

payload is also considered. The flexible links are 

modelled as clamped-free Euler-Bernoulli 

beams having a mass at the tip which act as a 

payload. The equations of motion are obtained 

using Lagrangian assumed modes method 

(AMM). This dynamic modelling considers only 

the flexural modes of vibrations. The 

expressions of joint torques consisting of inertia 

matrix, centrifugal and Coriolis‟ torques matrix, 

gravity matrix, stiffness matrix and other 

miscellaneous terms are obtained for the both 

joints. 

The following assumptions are made before 

modelling: 

1. The flexible link is considered as a 

distributed mass system. 

2. The links undergo small elastic 

deformations. 

3. Euler-Bernoulli beam theory with fixed-free 

boundary conditions can describe the vibratory 

motion of the flexible link. 

 

 
Figure1: Dynamic Modelling of a Two Link Flexible Manipulator Having Two Clamped-Free Euler-

Bernoulli Beams and Two Revolute Joints 

Figure 1 shows a two link flexible manipulator. There are three coordinate frames. The frame X-Y is 

the reference/ ground frame while the frames X1-Y1 and X2-Y2 are the local frames attached to link 1 

and link 2 respectively. The axis X1 is parallel to undeformed beam axis corresponding to link 1 and 

the axis X2 is parallel to undeformed beam axis corresponding to link 2. The joint 1 is given a rigid 

rotation of θ1 and the joint 2 is given a rigid rotation of θ2. 

The position of any point on link one with respect to ground is given by: 

    (1) 

The position of any point on link two with respect to ground is given by: 

  (2) 

where, 

 

θ1 

θ2 

w2(x2, t) 

w1
* = w1(L1, t) 

X1 

X 

Y 

X2 

Y1 

Y2 

Link 1 
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Joint 2 
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;  ; ;    

 
L1 and L2 = length of link one and two respectively, 

θ1 and θ2 = joint rotations (rigid) of joints one and two respectively, 

x1 and x2 = distances measured along undeformed beam one and beam two axes, i.e. X1 and X2 

respectively,  

w1(x1, t) and w2(x2, t) = elastic displacements of links one and two respectively undergoing flexural 

vibrations, obtained by the solution of clamped-free Euler-Bernoulli beam equation 

{r1} = position coordinates of any point on link one w.r.t to undeformed beam one axes i.e., X1, Y1 

{r2} = position coordinates of any point on link two w.r.t to undeformed beam two axis i.e., X2, Y2 

{r1
*} = position coordinates of the end point of link one w.r.t. undeformed beam one axis X1 

The velocity of any point on link one with respect to ground is given by: 

  (3) 

The velocity of any point on link two with respect to ground is given by: 

 
 (4) 

Now, total kinetic energy of the two link manipulator system is given by: 

Total kinetic energy, K.E. = Kinetic energy of link one, K.E.1 + Kinetic energy of link two, K.E.2 

Thus,   

  (5) 

Now, total potential energy of the two link flexible manipulator system is given by: 

Total potential energy, P.E. = Potential energy of link 1, P.E.1 + Potential energy of link 2, P.E.2 

The potential energy of each link is calculated by adding the strain energy and gravitational potential 

energy for that link. So, we get 

Potential energy of link i (i = 1, 2) = Strain energy of link i, S.E.i + Gravitational potential energy of link 

i, G.P.E.i 

Hence, P.E. = (S.E.1 + G.P.E.1) + (S.E.2 + G.P.E.2) 

Thus,  

    (6) 

where, ρi = density of link i; Ai = area of cross-section of link i ; Ei = Young‟s modulus of elasticity of 

link i, Ii = area moment of inertia of link i; i = (1,2): denotes link number; the superscript- ( ′ ) denotes 

transpose of a matrix; w1 and w2 => w1(x1, t) and w2(x2, t) respectively; {g}′ = {0     g}  

Now, Lagrangian is defined as the difference of kinetic energy and potential energy. Therefore, 

Lagrangian of the two link flexible manipulator system is given by:  

Lagrangian, L = K.E. – P.E. 

Using dynamics equations we can now obtain the values of joint torques. The dynamics equation is 

given as follows: 
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   (7) 

where, qj represents the generalized coordinate associated with joint j and Qj represents the 

generalized external force/ torque applied at joint j ; j represent the joint number (for the present case, 

j = 1 and 2) 

After using the dynamics equation, we obtain the equation of motion of the two link flexible 

manipulator system in the matrix form as follows: 

 
 (8) 

where, [M(t)] = inertia matrix, [H(t)] = centrifugal and Coriolis forces/ torques matrix; [G(t)] = gravity 

matrix; [C(t)] = matrix associated with velocity dependent terms; [K(t)] = stiffness matrix; [K(t)]# = 

matrix containing miscellaneous terms; [Q(t)] = force/ torque matrix 

 ;                        

where, w1
* => w1(L1, t) = function of time only; it is obtained by putting x1 = L1 in the term w1(x1, t) 

The terms-  represent the elastic motion (displacement, velocity and acceleration 

respectively) of the end point of link i. 

A. Assumed Modes Method 

It has been mentioned before that the term wi(xi, t) for any link i can be found out by the solution of 

equation of motion of Euler-Bernoulli beam. Since, a flexible link is a continuous system, its solution 

is given as follows: 

  (9) 

where, n = number of mode (n = 1, 2, ….∞); Wn(xi) = nth mode shape and is a function of distance x 

measured along undeformed beam axis for link i; Tn(t) = time dependent function of nth mode 

Since it is impossible to include all the infinite number of modes of the system, hence it is modelled 

with reduced number of modes by assuming some definite number of modes which best describe the 

behavior of the system. Thus, we can rewrite the above equation with reduced number of modes say 

m, as follows: 

  (9a) 

where, m = number of assumed modes; it is a finite integer 

For the present case, only first two modes are considered, i.e. m = 2. 

The boundary conditions used for the two flexible links are as follows: 

i)    (9b) 

ii)  = 0   (9c) 

iii)      (9d) 

iv)       (9e) 

where, Mpi and Jpi = effective mass and effective mass moment of inertia respectively of the payload 

attached at the end point of link i; subscript p stands for payload. 
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Figure 2: Calculation of Effective Inertia at the End of Links. 

Referring to figure 2 where the joint 1 is made fixed, the effective mass and effective mass moment of 

inertia at the end of each link can be found out as follows: 

For link 1, Mp = mp1 + (m2 + mp) cos2θ2 (10a) 

and Jp = Jp1A + J2A + JpA   (10b) 

For link 2, Mp = mp   (10c) 

and Jp = JpCG + mprp
2    (10d) 

where, mp1 = mass of actuator placed at the end of link 1; m2 = mass of link 2; mp = mass of payload 

attached at the end of link2; Jp1A = mass moment of inertia of actuator placed at the end of link 1 

about point A = Jp1 + mp1rp1
2 ; (Jp1 = mass moment of inertia of hub at joint 2 about its own center of 

gravity); J2A = mass moment of inertia of link 2 about point A = J2 + m2(L2/2)2; (J2 = mass moment of 

inertia of link 2 about its own center of gravity); JpA = mass moment of inertia of payload attached at 

the end of link 2 about point A = JpCG + mprp
2 + mpL2

2; CG stands for center of gravity; rp1 = distance of 

center of gravity of hub at the end of link 1,i.e. at joint 2 from point A, measured perpendicular to the 

undeformed beam axis X1; rp = distance of CG of payload at the end of link 2 from point B, measured 

perpendicular to the undeformed beam axis X2 . 

Using above mentioned boundary conditions, the expression for mode shape can be found out as 

follows: 

 (11) 

where,  

;  

 ; ωn = nth mode natural angular frequency of the beam i; C1n = normalization constant 

The frequency equation of any link i undergoing flexural vibrations is also derived and found to be 

varying with time. The frequency equation is as follows: 
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(12) 

where,  ;  ;  

The roots of the frequency equation (eqn. 12) are given by the values of zni. The frequency equation is 

time-dependent and hence the natural frequencies are also time-dependent. Ghosal [15] has also 

discussed about the time-dependency of the frequency equation. 

The time dependent term is given as follows: 

 (13a) 

If damping is present then equation 13a gets modified to equation 13b. 

      (13b) 

where, ξn = nth mode damping ratio, 

ωn = nth mode natural angular frequency, 

ωdn = nth mode damped angular frequency =  

Assuming the following initial conditions: 

i) ,   (13c) 

ii) ,   (13d) 

and the validity of the principal of orthogonality of normal modes of vibration, we obtain the following 

values of An and Bn: 

  ;   (13e) 

      (13f) 

B. Effect of Payload Inertia and Hub Inertia 

If the mass and mass moment of inertia of the two hubs located at the two joints (refer Fig. 2) are 

considered, the expressions of total kinetic energy and total potential energy gets altered by the 

addition of following terms: 

      (14) 

   (15) 

  (16) 

   (17) 

where, IhO and Ih = mass moment of inertias of hubs situated at joint 1 and joint 2 respectively; mh = 

mass of hub at joint 2; pmh and vmh = position and velocity coordinates respectively of the hub situated 

at joint 2 measured w.r.t. local frame X1-Y1;                        {e1} = {e1x    e1y}′  is the location of center of 

gravity of hub at joint 2 measured w.r.t. local frame X1-Y1; subscript h stands for hub. Due to the 

addition of these extra terms, the Lagrangian of the system gets altered and thus the joints torques 

also get changed. Similarly, if a payload (refer to Fig. 2) is attached to the flexible manipulator system, 

the equation of motion of the system gets altered as follows: 

 
  (18) 
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where the symbols have their usual meanings; the subscript „mod‟ stands for modified and 

 ;  ;  

 ; 

     

The alteration in the equation of motion is due to the inclusion of a new term- w2
* and its derivatives, 

which represent the elastic motion of the end point of link 2. The term w2
* is obtained by putting x2 = 

L2 in the term w2(x2, t), i.e. w2(L2, t). Furthermore, the matrices- M, H, G, C, K and K# also get modified 

due to the presence of payload.  

The general expression for the joint torque is given by equation 19 given below.  

 
  (19) 

where, subscript „j‟ denotes joint number (j = 1,2). The coefficients representing the elements in the 

first two rows of the inertia matrix [Mj(t)]5X5 are evaluated using the expressions provided in equation 

20. 

; 

; 

;  

; 

; 

; 

; 

; 

; 

;      (20) 

The coefficients representing the elements in the first two rows of the centrifugal/Coriolis torque 

matrix [Hj(t)]5X1 are evaluated using the expressions given in equation (21). 
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; 

; 

      (21) 

The coefficients representing the elements in the first two rows of the gravity matrix [Gj(t)]5X1 are 

evaluated using the expressions given in equation 22. 

; 

; 

   (22) 

The coefficients representing the elements in the first two rows of the velocity dependent/ gyroscopic 

matrix [Cj(t)]5X5 are evaluated using the expressions provided by equation 23. 

; 

; 

; 

; 

; 

; 
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; 

  (23) 

The coefficients representing the elements in the first two rows of the stiffness matrix [Kj(t)]5X5 are 

evaluated using the expressions given in equation 24. 

; 

;       (24) 

The coefficients representing the elements in the first two rows of the miscellaneous matrix [Kj
#(t)]5X1 

are evaluated using the expressions given in equation 25. 

; 

;       (25) 

Thus, from the expressions of joint torque for the both joints it can be found out that these 

expressions are highly non-linear and involve strong coupling between the joint variables. An explicit 

solution cannot be obtained for these expressions. In order to solve these equations, numerical 

methods have to be adopted. 

II. RESULTS 

The simulation results are obtained using inverse dynamics. Table 1 shows the link parameters for 

the flexible manipulator.  

A sinusoidal input of amplitude 1 rad and time period 1 sec is applied at joint one while a sinusoidal 

input of amplitude 1 rad and time period 0.5 sec is applied at the joint 2.

Table 1: Link Parameters for Two Link Flexible Manipulator 

Link parameters Value 

Length of each link, L1 = L2 0.5 m 

Density of material of first link, ρ1 7850 kg/m3 

Density of material of second link, ρ2 7850 kg/m3 

Area of cross-section of first link, A1 7.9423 X 10-6 m2 

Area of cross-section of second link, A2 7.9423 X 10-6 m2 

Area moment of inertia of first link, I1 5 X 10-12 m4 

Area moment of inertia of second link, I2 5 X 10-12 m4 

Hub inertia of joint 1, Jh1 0.02 kg-m2 

Hub inertia of joint 2, Jh2 0.02 kg-m2 

Modal damping ratios (link 1) 0.005 for all three modes 

Modal damping ratios (link 2) 0.08 for all three modes 

 

Table 2 shows the time-dependent behavior of natural frequency of the first link of the flexible 

manipulator.  

The mode shapes of link 1 and link 2 at no payload are shown in figure 3.  
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Figure 3a: Mode Shapes of Link One 

 
Figure 3b: Mode Shapes of Link Two 

Figure 3: Mode Shapes of Link 1 and Link 2 of the Two Link Flexible Manipulator 

From figures 3a and 3b it can be observed that the mode shapes conform to our assumption of fixed-

free beam.  

Table 2: Variation of Natural Frequencies of Links of the Two Link Flexible Manipulator at Different 

Payloads Attached at the Tip of the Second Link for Joint Inputs in the Form of Sinusoidal Functions 

Payload 

(kg) 

Link 1 Link 2 

Mode 1 (Hz) Mode 2 (Hz) Mode 3 (Hz) Mode 

1 (Hz) 

Mode 

2 (Hz) 

Mode 

3 (Hz) Min Max Min Max Min Max 

0 3.278 3.284 57.269 57.272 157.42 157.43 8.96 56.18 157.3 

0.1 2.446 2.479 57.215 57.227 157.39 157.41 2.38 40.03 128.2 

0.2 2.104 2.167 57.191 57.21 157.38 157.4 1.71 39.68 127.8 

 

From table 2 it can be observed that the natural 

frequencies of links decrease with increase in 

the mass of payload attached at the tip of the 

second link.  Besides this, link 1 exhibits 

natural frequencies having minimum and 

maximum values at a given value of payload. 

This is due to the time-dependency of natural 

frequencies of the first link. It is also observed 

that the natural frequency in the fundamental 
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mode is more prone to any variation in payload 

than the other two modes. Since the payload is 

attached at the tip of the second link, so the 

relative change in the natural frequencies of the 

second link is more than that of the first link.  

A. Comparison of results 

This section presents the comparison of 

results for the flexible manipulator. The results 

are compared with the simulation results of 

Mohan [16]. Mohan has used forward dynamics 

to obtain the results and hence, forward 

dynamics is used to obtain the simulation 

results in the present work. The effect of gravity 

is not considered. For the two link flexible 

manipulator, joint 1 is provided a torque of 

0.011 Nm while joint 2 is given a torque of 

0.007 Nm. Table 3 

shows the link parameters for two link flexible 

manipulator. Mohan [16] has considered first 

two modes of vibration only. He has used 

Newton-Euler‟s approach for modeling the 

flexible manipulator system. He has presented a 

recursive algorithm to solve the differential 

equations using Decoupled Natural Orthogonal 

Complement matrices. In the present work, first 

two modes of vibration are used. The differential 

equations of motion are solved using ode45 

solver. 

 

Table 3: Link Parameters for a Flexible Manipulator with Two Links [16] 

 Link parameter Value 

 

 

 

 

 

Link 1 

Length 0.24 m 

Area of cross-section 1.2 X 10-5 m2 

Link mass 0.020 kg 

Mass per unit length 0.0833 kg/m 

Flexural rigidity 0.05 Nm2 

Hub inertia 3 X 10-5 

Mode 1 damping ratio 0.2 

Mode 2 damping ratio 0.04 

Payload 0.19 kg 

 

 

 

 

Link 2 

Length 0.19 m 

Area of cross-section 1.2 X 10-5 m2 

Link mass 0.017 kg 

Mass per unit length 0.1053 kg 

Flexural rigidity 0.05 

Mode 1 damping ratio 0.2 

Mode 2 damping ratio 0.04 

Payload 0 kg 

 

Fig.4 and Fig. 5 compare the joint responses obtained by present work and Mohan [16].  
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Fig.4: Comparison of Joint 1 Responses of Present Work and Mohan‟s [16] Work 

From Fig. 4, it can be observed that the two curves deviate after about 0.5 sec. At 0.7 sec, the 

response of present work deviates from that of Mohan‟s by about 18%. 

 
Fig.5: Comparison of Joint 2 Responses of Present Work and Mohan‟s [16] Work 

From Fig. 5 it can be observed that the two responses match well up to 0.25 sec. After that the 

response of present work increases rapidly. 

III. CONCLUSIONS 

Most of the papers deal with the planar 

single link flexible robotic arms with small 3D 

motions. For such links, a linear model is 

sufficient to describe the dynamic 

characteristics. A lot of research is going on, on 

non-linear models of flexible arms. The simple 

case of non-linearity in flexible arms is that of a 

two link case which has been described in few 

papers. Furthermore, links having revolute 

joints have been studied. In this paper, a 

dynamic model of two link flexible manipulator 

having two revolute joints is obtained using 

Lagrangian-assumed modes method. The links 

are modelled as Euler-Bernoulli beams with 

fixed-free boundary conditions. The frequency 

equations for the both links are derived and it is 

found that link 1 exhibits time-dependent 

natural frequencies. The paper also compares 

the results of the present work with the work of 
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Mohan. Same types of assumptions are used. 

While Newton-Euler-AMM is followed by Mohan, 

Lagrangian-AMM is followed in present work. It 

is found that the response of joint 1 match up 

to certain extent with that of Mohan‟s but 

response of joint 2 does not match. The natural 

frequency of link 1 is found to be time-

dependent.  
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