COMPARISON OF PHOTOTAXIS RESPONSES USING IMPROVISED APPARATUS: A NOVEL EXPERIMENT FOR HANDS-ON AND MINDS-ON LEARNING

Authors

  • Dr. G. Nagaraj Zoology Section, Regional Institute Of Education (NCERT), Manasagangothri, Mysore-570006, Karnataka, India.

Keywords:

Abstract

Inexpensive and simple experiments must be designed to provide ‘hands-on’ and minds-on’ experience for the school students. In this circumstance, present study is conducted with the aims (a) to improvise a low-cost method for easy measuring of phototaxis and (b) to compare phototaxis responses among three strains (red, sepia and white eye) of adult Drosophila melanogaster. Low-cost transparent tubes were improvised to conduct light/ dark preference and colour choice test. Results showed that all the three strains of flies were roaming randomly in parallel achromatic light. Sepia eyed flies exhibited maximum and fast positive phototaxis response than other two strains; and yellow light attracts all the three strains of flies. It may be concluded that, the improvised experimental setups of the present study are relatively inexpensive, simple and easily useable by the school students. Moreover, it is strongly believed that such inexpensive experiments can reach even the rural school students to award ‘hands-on and minds-on’ learning.

References

References

Reinders D, Maike T (2010). On the role of the experiment in science teaching and learning-Vision and the reality of instructional practice. Kalogiannakis M, Stavrou D, Michaelidis P (Eds). Proceedings of the 7th international conference on Hands-on Science. Rethymno-Crete, 17-30.

Welzel M, Hallter K, Bandiera M, Hammelev D, Koumaras P, Niedderer H, Paulsen A, Robinault K, Aufschnaiter S (1998). Aims of experimentation in Science teaching-results of a European project. Zeitschrift fur Didaktik der Naturwissenschaften, 4(1): 29-44.

Muller CT (2004). Teachers, subjective theories on learning as predictor of teaching-learning processes in physics instruction. Berlin, Germany: Logos.

Muller CT, Duit R (2004). The role of experiments: Teachers’ beliefs and the reality of instructional practice. In a Pitton (Hrsg.), Chemie and physic-didaktische Forscchung and Physik band 24: 33-35.

Borst A (2009). Drosophila’s view on insect vision. Curr Biol, 19: R36-R47.

Katz B, Minke B (2009). Drosophila photo receptors and signaling mechanisms. Front Cell Neurosci, 3:1-18.

Hardic RC (2012). Photo-transduction mechanisms in Drosophila microvillar photoreceptors. WIREs Membr Transp Signal, 1:162-187.

Farca Luna AJ, von Essen AM, Widmer YF, Sprecher SG (2013). Light preference assay to study innate and circadian regulated photobehavior in Drosophila larvae. J Vis Exp, 20: (74).

Paulk A, Millard SS, van Swinderen B (2013). Vision in Drosophila: seeing the world through a model's eyes. Annu Rev Entomol, 58: 313-332.

Simon AF, Liang DT, Krantz DE (2006). Differential decline in behavioral performance of Drosophila melanogaster with age. Mech Ageing Dev, 127(7): 647-651.

Leaffelaar D, Grigliatti T (1984). Age-dependent behavior loss in adult Drosophila melanogaster. Dev Genet, 4: 211-227

Gong Z, Liu J, Guo C, Zhou Y, Teng Y, Liu L (2010). Two pairs of neurons in the central brain control Drosophila innate light preference. Science, 22: 330(6003): 499-502.

Joesch M, Schnell B, Raghu SV, Reiff DF, Borst A (2010). ON and OFF pathways in Drosophila motion vision. Nature, 11: 468(7321): 300-304.

Bosch DS, van Swinderen B, Millard SS (2015). Dscam2 affects visual perception in Drosophila melanogaster. Front Behav Neurosci, 9(9): 149.

Kirpichenko TV, Vorob'eva LI (2001). Phototaxis and adaptation of the eyeless Drosophila melanogaster line. Tsitol Genet, 35(3):30-34.

Hay DA, Crossley SA (1977). The design of mazes to study Drosophila behavior. Behav Genet, 5: 389-402.

Vang LL, Medvedev AV, Alder J (2012). Simple ways to measure behavioral responses of Drosophila to stimuli and use of these methods to characterise a novel mutant. PLoS ONE, 7(5): e37495.

Benzer S (1967). Behavioral mutants of Drosophila melanogaster isolated by counter-current distribution. Proc Natl Acad Sci, 58: 1112-1119.

Connolly JB, Tully T (1998). Behavior, learning and memory. In: Roberts DB, editor. Drosophila: A practical approach. IRL; Oxford: 265-317.

Otsuna H, Shinomiya, Ito K (2014). Parallel neural pathways in higher visual centers of the Drosophila brain that mediate wavelength-specific behavior. Front Neural Circuits, 8 (8): 1-12.

Melnattur KV, Pursley R, Lin TY, Ting CY, Smith PD, Pohida T, Lee CH (2014). Multiple redundant medulla projection neurons mediate colour vision in Drosophila. J Neurogenet, 28(0): 374-388.

Yamaguchi S, Desplan C, Heisenberg M (2010). Contribution of photoreceptor subtypes to spectral wavelength preference in Drosophila. Proc Natl Acad Sci, 23:107(12):5634-5639.

Kane EA, Gershow M, Afonso B, Larderet I, Klein M, Carter AR, de Bivort BL, Sprecher SG, Samuel AD (2013). Sensorimotor structure of Drosophila larva Phototaxis. Proc Natl Acad Sci, 1:110(40): e3869-3877.

Gong Z (2009). Behavioral dissection of Drosophila larval phototaxis. Biochem Biophys Res Commun, 1: 382(2): 395-399.

Gong Z, Gong Z (2012). A molecular diffusion based utility model for Drosophila larval phototaxis. Theor Biol Med Model, 2(9): 3.

Frechter S, Elia N, Tzarfaty V, selinger Z, Minke B (2007). Translocation of Gq alpha mediates long-term adaptation in Drosophila photoreceptors. J Neurosci, 27: 5571-5583.

Ballinger DG, Benzer S (1988). Photophobe (Ppb), a Drosophila mutant with a reversed sign of phototaxis; the mutation shows an allele-specific interaction with sevenless. Proc Natl Acad Sci, 85(11): 3960-3964.

Fischbach KF (1979). Simultaneous and successive colour contrast expressed in slow phototactic behavior of walking Drosophila melanogaster. J Comp Phisiol, 130: 161-171.

Gao S, Takemura SY, Ting CY, Huang S, Lu Z, Luan H, rister J, Thum AS, Yang M, Hong St, Wang JW, Odenwald WF, White BH, Meinertzhagen IA, Lee CH (2008). The neural substrate of spectral preference in Drosophila. Neuron, 60: 328-342.

Schnaitmann C, Vogt K, Triphan T, Tanimoto H (2010). Appetitive and aversive visual learning in freely moving Drosophila. Front behave Neurosci, 4: 10.

Yamaguchi S, Desplan C, Heisenberg M (2010). Contribution of photoreceptor subtypes to spectral wavelength preference in Drosophila. Proc Natl Acad Sci, 107: 5634-5639.

Wardill TJ, List O, Li X, Dongre S, McCulloch M, Ting CY, O'Kane CJ, Tang S, Lee CH, Hardie RC, Juusola M (2012). Multiple spectral inputs improve motion discrimination in the Drosophila visual system. Science, 18:336(6083): 925-931.

McEwen RS (1918). The reactions to light and to gravity in Drosophila and its mutants. J Exp Zool, 25: 49-105.

Pak WL, Grassfield J, White NV (1969). Nonphototactic mutants in a study of vision of Drosophila. Nature, 222: 351-354.

Pak WL (2010). Why Drosophila to study phototransduction? J Neurogenet, 24: 55-66.

Downloads

Published

2016-08-31

Issue

Section

Articles