POTENTIOMETRIC AND QUANTUM CHEMICAL STUDIES OF SOME METAL COMPLEXES WITH 2- (4-AMINO-1,5-DIMETHYL-2-PHENYL-1,2-DIHYDRO-PYRAZOL-3-YLIDENEAMINO)PHENOL

Authors

  • GAMAL A.H. GOUDA M.H. MAHROSS Faculty Of Science, Al-Azhar University, Assiut 71524, Egypt

Abstract

Stability constants of Ni2+, Cu2+ and Pd2+ metal complexes with 2-(4-amino-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-ylideneamino)phenol (APP) have been determined using a pH metric titration technique in 0.1 M KCl and 20 % (v/v) ethanol-water mixture. The sequence of stability constants is: Cu2+ > Pd2+ > Ni2+. The dissociation constants pKiH of APP and the stability constants log Ki values of their complexes were determined at 298, 308 and 318 K. The corresponding thermodynamic parameters (ΔG, ΔH and ΔS) were derived and discussed. The dissociation process is non-spontaneous, endothermic and entropically unfavourable. The formation of the metal complexes has been found to be endothermic and entropically favourable. Quantum chemical calculation gives a good correlation between the experimental and theoretical calculation where, the sequence of stability of metal complexes 1:2 arranged as Cu+2 > Ni+2 > Pd+2 as a result of values of energy gap between EHOMO and ELUMO. On the other hand, for complexes 1:1 for the same metals the sequence of stability arranged as Cu+2 > Pd+2 > Ni+2 according to values of the energy gap.  

References

Al-Sarawy, A.A., El-Bindary, A.A., El-Sonbati, A.Z., Mokpel, M.M., 2006. Potentiometric and thermodynamic studies of azosulfonamide drugs. Polish J. Chem. 80, 289.

Al-Shihri, A.S., Abdelhady, A.M., El-Bindary, A.A., 2004. Potentiometric and thermodynamic studies of 2-acrylamidosulfacetamide and its metal complexes in monomeric and polymeric forms. Chem. Pap. 58, 155.

Athawale, V.D., Lele, V., 1996. Stability constants and thermodynamic parameters of complexes of lanthanide ions and (±) norvaline. J. Chem. Engineering Data 41, 1015.

Atkins, P., De Paula, J., 2006. Physical Chemistry (8th ed.). W.H. Freeman and Company 212.

Becke, A., 1988. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev. A. 6, 3098.

Bissantz, C., Kuhn, B., Stahl, M., 2010. A medicinal chemist's guide to molecular interactions. J. Med. Chem. 53, 5061.

Bjerrum, J., 1941. Metal amine formation in aqueous solution. P. Hasse and Son. Copenhagen 298.

Calvin, M., Wilson, K.W., 1945. Stability of chelate compounds. J. Am. Chem. Soc. 67, 2003.

Dickerson, R.E., Geis, I., Benjamin, I.W.A., 1976. Chemistry, Matter and the Universe, (USA).

El-Sherbiny, M.F., 2005. Potentiometric and thermodynamic studies of 2-thioxothiazolidin-4-one and its metal complexes. Chem. Pap. 59, 332.

Gece, G., Bilgic, S., Turksen, O., 2009. Mat. Corros. 60, 9999.

Geerlings, P., De Proft, F., Langenaeker, W., 2003. Conceptual density functional theory. Chem. Rev. 103, 1793.

Goher, M.A.S., Mautner, F.A., Abu-Youssef, M.A.M., 1999. Synthesis, crystal structure, spectroscopic and thermal investigation of trans-diazido- tetrakis (pyrazole) manganese(II) and trans-diaquadiazidobis (3,4-dimethylpyridine) manganese(II). Transition Metal Chem. 24, 29.

Golcu, A., Tumer, M., Demirelli, H., Wheatley, R.A., 2005. Cd(II) and Cu(II) complexes of polydentate Schiff base ligands: Synthesis, characterisation, properties and biological activity. Inorg. Chim. Acta 358, 1785.

Gouda, G.A.H., Ali, G.A.M., Seaf Elnasr, T.A., 2015. Stability studies of selected metal ions chelates with 2-(4-amino-1,5- dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-ylideneamino)phenol. Int. J. Nano. Chem. 1, 1.

Irving, H.M., Miles, M.G., Pettit, L.D., 1967. A study of some problems in determining the stoicheiometric proton dissociation constants of complexes by potentiometric titrations using a glass electrode. Anal. Chim. Acta 38, 475.

Irving, H.M., Rossotti, H.S., 1954. J. Chem. Soc. 2904.

Jacopo, T., Benedetta, M., Roberto, C., 2005. Quantum mechanical continuum solvation models. Chem. Rev. 105, 2999.

Jaffery, G.H., Basset, J., Mendham, J.R., Denney, C., 1978. Vogel’s Textbook of Quantitative Chemical Analysis 5th edition, John Wiley and Sons, Inc., New York p. 55.

Khalil, M.M., Radalla, A.M., Mohamed, A.G., 2009. Potentiometric investigation on complexation of divalent transition metal ions with some zwitterionic buffers and triazoles. J. Chem. Engineering Data 54, 3261.

Kostova, I., Saso, L., 2013. Advances in research of Schiff base metal complexes as potent antioxidants. Current Medicinal Chem. 20, 4609.

Mohamed, G.G., Omar, M.M., Ibrahim, A.A., 2009. Biological activity studies on metal complexes of novel tridentate Schiff base ligand. Spectroscopic and thermal characterization. European J. Medicinal Chem. 44, 4801.

Mukherjee, A., Subramanyam, U., Puranik, V.G., Mohandas,T.P., Sarkar, A., 2005. Pyrazole-tethered heteroditopic ligands and their transition metal complexes: synthesis, structure, and reactivity. European J. Inorg. Chem. 2005, 1254.

Nair, V.S.K., Parthasarathy, S., 1970. Studies on metal complexes in aqueous solution-V: 4-Methyl phthalates of some transition metals. J. Inorg. Nucl. Chem. 32, 3293.

Parr, R.G., Mulliken, R.S., 1950. LCAO self-consistent field calculations of die pi-elcctron energy levels of cis-and trans-l ‚3-butadiene. J. Chem. Phys. 18, 1338.

Parr, R.G., Pearson, R.G., 1983. Absolute hardness: companion parameter to absolute electronegativity. J. Amer. Chem. Soc. 105, 7512.

Pearson, R.G., 1988. Absolute electronegativity and hardness: application to inorganic chemistry. Inorg. Chem. 27, 734.

Prakash, A., Adhikari, D., 2011. Application of Schiff bases and their metal complexes-A review. Int. J. Chem.Tech. Res. 3, 1891.

Prakash, L.T., Gouri, A.H., Sharanappa, T.N., 1995. Kinetics of oxidation of antimony(III) by vanadium(V) in aqueous hydrochloric acid media. J. Chem. Soc. Dalton Trans. 22, 3623.

Rosu, T., Pahontu, E., Maxim, C., Georgescu, R., Stanica, N., Gulea, A., 2011. Some new Cu(II) complexes containing an on donor Schiff base: synthesis, characterization and antibacterial activity. Polyhedron 30, 154.

Sam, J., Mohammad, A. K., Abraham, J., 2011. Electrochemical, surface analytical and quantum chemical studies on Schiff bases of 4-amino-4H-1, 2, 4-triazole-3,5-dimethanol (ATD) in corrosion protection of aluminium in 1N HNO3. Bull. Mat. Sci. 34, 1245.

Saxena, R.S., Gupta, K.C., Mittal, M.L., 1968. Potentiometric and conductometric studies on the composition and stability of zinc complexes of thiomalic acid. Canad. J. Chem. 46, 311.

Sharmeli, Y., Lonibala, R., 2009. Thermodynamics of the complexation of N-(pyridin-2-ylmethylene) isonicotinohydrazide with lighter lanthanides. J. Chem. Eng. Data 54, 28.

Singh, K., Barwa, M.S., Tyagi, P., 2007. Synthesis and characterization of cobalt(II), nickel(II), copper(II) and zinc(II) complexes with Schiff base derived from 4-amino-3-mercapto-6-methyl-5-oxo-1,2,4-triazine. J. Medicinal Chem. 42, 394.

Wu, H.C., Thanasekaran, P.C., Tsai, H., 2006. Self-assembly, reorganization, and photophysical properties of silver(I)-Schiff-base molecular rectangle and polymeric array species. Inorg. Chem. 45, 295.

Zhao, M., Zhong, C., Stern, C., Barrett, A.G.M., Hoffman, B.M., 2005. Synthesis and magnetic properties comparison of M-Cu(II) and M-VO(II) Schiff base-porphyrazine complexes: what is the mechanism for spin-coupling. J. Amer. Chem. Soc. 127, 9769

Downloads

Published

2016-09-30