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1 Introduction

The conformal theory based on the
theory of Finsler spaces by Mat-
sumoto [9] has been developed by M.
Hashiguchi [7]. Let F and F̄ be two
Finsler metrics on a manifold M such
that F̄ = eσ(x)F , where σ is a scalar
function on M , then we call such two
metrics F and F̄ are conformally re-
lated. The conformal change is said to
be a homothety if σ is a constant.

Recent studies show that m-th root
Finsler metrics plays a very impor-
tant role in physics, space-time and
general relativity as well as in unified
gauge field theory ([2], [4]). In 1979,
H. Shimada [12] developed the the-
ory of m-th root Finsler metrics, ap-
plied to ecology by Antonelli [1] and
studied by several authors ( [3], [12],
[14], [17]). It is regarded as a gener-
alization of Riemannian metric in the
sense that for m = 2, 3 and 4, it is
called Riemannian metric, cubic met-
ric and quartic metric, respectively. Z.
Shen and B. Li have studied the ge-
ometric properties of locally projec-
tively flat fourth root metrics in the

form F = 4
√
aijkl(x)yiyjykyl and gen-

eralized fourth root metrics in the form

F =
√√

aijkl(x)yiyjykyl + bij(x)yiyj

[8]. A. Tayebi, T. Tabatabaeifar and
E. Peyghan [13] introduced Kropina
change of m-th root metric and estab-
lished conditions on Kropina change of
m-th root metric, to be locally dually
flat and locally projectively flat.
Recently, B. Tiwari and M. Kumar
[16] have studied Randers change of
a Finsler space with m-th root met-
ric. B. Tiwari and G. K. Prajapati
[15] have also studied on Einstein Gen-
eralized Kropina change of m-th root
Finsler metrics.

Let (M,F ) = Fn be an n-
dimensional Finsler manifold. For a
non-zero 1-form β(x, y) = bi(x)yi on
M , define a Finsler change as follows

F (x, y)→ F̄ (x, y) = f(F, β),

where f(F, β) is a positively homoge-
neous function of F and β.

A Finsler change is called Kropina

change if f(F, β) = F 2

β and general-

ized Kropina change if f(F, β) = Fk+1

βk ,
where k is any positive integer.
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The purpose of this paper is to
study generalized Kropina conformal
change of m-th root metrics, defined
by

F̄ = eσ(x)F
k+1

βk
,

(1.1)
where F = m

√
A is an m-th root metric,

for which we shall restrict our consid-
eration on β, where β > 0.

In General Relativity, the Einstein
metrics are solutions to Einstein field
equation, which closely connect Rie-
mannian geometry with gravitation.
C. Robles studied a special class of Ein-
stein Finsler metrics, that is, Einstein
Randers metrics, and proved that for
a Randers metric on a 3-dimensional
manifold, it is Einstein if and only if it
has constant flag curvature. E. Guo,
X. Mo and X. Zhang have explicitly
constructed an Einstein Finsler met-
rics of non-constant flag curvature in
terms of navigation representation [6].
Recently, Z. Shen and C. Yu, using cer-
tain transformation, construct a large
class of Einstein metrics [10]. In this
paper, we establish following theorems

Theorem 1.1 Let F̄ = eσ(x) Fk+1

βk be a
non-Riemannian generalized Kropina
conformal change of m-th root metric
F on a manifold of dimension n ≥ 2,
with m ≥ 3 and m - (k + 1). If F̄ is
Einstein metric, Then it is Ricci-flat.

Theorem 1.2 Let F̄ = eσ(x) Fk+1

βk be a
non-Riemannian generalized Kropina
conformal change of m-th root metric
F on a manifold of dimension n ≥ 2,
with m ≥ 3 and m - (k + 1). If F̄ is a
weak Einstein metric, Then it is Ricci-
flat.

Theorem 1.3 Let F̄ = eσ(x) Fk+1

βk be a
non-Riemannian generalized Kropina
conformal change of m-th root metric
F on a manifold of dimension n ≥ 2,
with m ≥ 3 and m - (k + 1). If F̄

is of scalar flag curvature K(x, y) with
isotropic S-curvature, then K = 0.

Throughout the paper we call the
Finsler metric F̄ as generalized
Kropina conformal change ofm-th root
metric and F̄n = (M, F̄ ) as general-
ized Kropina conformal transformed
Finsler space. We restrict ourselves for
m ≥ 3, throughout the paper and also
the quantities corresponding to the
generalized Kropina conformal trans-
formed Finsler space F̄n will be de-
noted by putting bar on the top of
that quantity.

2 Preliminaries

Let M be an n-dimensional C∞-
manifold. Denote TxM , the tangent
space of M at x. The tangent bun-
dle TM is the union of tangent spaces,
TM :=

⋃
x∈M TxM . We denote the

elements of TM by (x, y), where x =
(xi) be a point of M and y ∈ TxM
called supporting element. We denote
TM0 = TM \ {0}.
Definition: A Finsler metric on M is
a function F : TM → [0,∞) with the
following properties:
(i) F is C∞ on TM0,
(ii) F is positively 1-homogeneous on
the fibers of tangent bundle TM and

(iii) the Hessian of F 2

2 with element

gij = 1
2
∂2F 2

∂yi∂yj is positive definite on
TM0.

The pair Fn = (M,F ) is called
a Finsler space of dimension n. F is
called fundamental function and gij is
called the fundamental tensor of the
Finsler space Fn.
The normalized supporting element li
and angular metric tensor hij of F are
defined, respectively as:

li =
∂F

∂yi
, hij = F

∂2F

∂yi∂yj
. (2.1)

Let F be a Finsler metric de-
fined by F = m

√
A, where A is given
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by A = ai1i2...im(x)yi1yi2 ...yim with
ai1...im symmetric in all its indices [12].
Then F is called an m-th root Finsler
metric. Clearly, A is homogeneous of
degree m in y.
Let

Ai =
∂A

∂yi
, Aij =

∂2A

∂yi∂yj
, Axi =

∂A

∂xi
,

A0 = Axiyi, σxi =
∂σ

∂xi
. (2.2)

Then the followings hold

gij = A
2
m

−2

m2 [mAAij + (2−m)AiAj ],

yiAi = mA, yiAij = (m− 1)Aj ,

yi =
1

m
A

2
m−1Ai, A

ijAjk = δik,

AijAi =
yj

m− 1
, AiAjA

ij =
mA

m− 1
.

3 Fundamental metric
tensors and Spray
coefficients of gener-
alized Kropina con-
formal change of m-
th root metrics

The differentiation of equation (1.1)
with respect to yi, yields the normal-
ized supporting element l̄i which is
given by

l̄i = F̄

[
(k + 1)

mA
Ai −

k

β
bi

]
(3.1)

and the angular metric tensor h̄ij is
given by

h̄ij = F̄ 2

[
(k + 1)

mA
Aij+ (3.2)

(k + 1)(k + 1−m)

m2A2
AiAj−

k(k + 1)

mβA
(Aibj +Ajbi) +

k(k + 1)

β2
bibj

]
.

The fundamental metric tensor ḡij of
Finsler space F̄n can be given by

ḡij = h̄ij+l̄i l̄j .

By using equations (3.1) and (3.2), we
obtain metric tensor ḡij as

ḡij = F̄ 2

[
(k + 1)

mA
Aij (3.3)

+
(k + 1)(2k + 2−m)

m2A2
AiAj

−2k(k + 1)

mβA
(Aibj +Ajbi)

+
k(2k + 1)

β2
bibj

]
.

Above equation can be rewritten as

ḡij = F̄ 2

[
(k + 1)

mA
Aij + (3.4) (3.2)

(k + 1) {2k + 2− (2k + 1)m}
(2k + 1)m2A2

AiAj+(
2(k + 1)

√
k√

2k + 1mA
Ai −

√
k(2k + 1)

β
bi

)
×(

2(k + 1)
√
k√

2k + 1mA
Aj −

√
k(2k + 1)

β
bj

)]
.

Let

Hij =
(k + 1)

mA
Aij + (3.5)

(k + 1) {2k + 2− (2k + 1)m}
(2k + 1)m2A2

AiAj .

From [11],

Aij = Bij + εCiCj ,

then

Aij = Bij − εCiCj

1 + εC2
,

where C2 = BijCiCj and Ci = BijCj .
By using above results, we obtain

Hij =
mA

k + 1
Aij − (3.6)

{2k + 2− (2k + 1)m}
(k + 1)(m− 1)

yiyj .

Thus in view of equations (3.4) and
(3.5), ḡij can be written as

ḡij = F̄ 2 [Hij +KiKj ] ,
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where

Ki =
2(k + 1)

√
k√

2k + 1mA
Ai −

√
k(2k + 1)

β
bi,

Kj =
2(k + 1)

√
k√

2k + 1mA
Aj−

√
k(2k + 1)

β
bj .

By direct computation, we have

ḡij =
1

F̄ 2

[
w0A

ij + w1y
iyj + w2B

iBj

+(yiBj + yjBi)
]
,

where,

w0 =
mA

(k + 1)
, (3.7)

w1 = − (2k + 2)− (2k + 1)m

(k + 1)(m− 1)

−k(2k + 1)m2β2

X
,

w2 = −
[
k(2k + 1)m2(m− 1)2A2

X

]
,

w3 = −
[
k(2k + 1)m2(m− 1)2Aβ

X

]
,

X = (k + 1)(m− 1)
[
β2 {k(2m− 3)

+(m− 1− 2k2)
}

+km(m− 1)(2k + 1)AB2
]
,

Bi = Aijbj , B2 = Bibi.

Thus, we have
Proposition 3.1 : The covariant
metric tensor ḡij and the contravari-
ant metric tensor ḡijof generalized
Kropina confomal trasformed Finsler
space F̄n are given as:

ḡij = F̄ 2

[
(k + 1)

mA
Aij

+
(k + 1)(2k + 2−m)

m2A2
AiAj

−2k(k + 1)

mβA
(Aibj +Ajbi)

+
k(2k + 1)

β2
bibj

]
.

and

ḡij =
1

F̄ 2

[
w0A

ij + w1y
iyj + w2B

iBj

+ w3(yiBj + yjBi)
]
,

where w0, w1, w2, w3, X,B
i and B2 are

given by equation (3.7).

In local coordinates, the geodesics
of a Finsler metric F = F (x, y) are
characterized by

d2xi

dt2
+ 2Gi(x,

dxi

dt
) = 0, (3.8)

where

Gi =
1

4
gil{[F 2]xqyly

q − [F 2]xl} (3.9)

are called spray coefficients.

For calculate the spray coefficients Ḡi,
we find

[
F̄ 2
]
xq = F̄ 2

[
2σxq +

2(k + 1)Axq

mA

− 2kβxq

β

]
(3.10)

and

[
F̄ 2
]
xqyl

yq = F̄ 2

[
2σ0l +

2(k + 1)A0l

mA

+
(k + 1) {4(k + 1)− 2m}

m2A2
AlA0 − (3.11)

2k

β
β0l +

2k(2k + 1)

β2
blβ0 +

4σ0(k + 1)Al
mA

−4kσ0bl
β

− 4k(k + 1)

mβA
(Alβ0 +A0bl)

]
.
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In view of equations (3.9), (3.10),
(3.11) and proposition 3.1, we have

Ḡi =
1

4

[
w0A

il + w1y
iyl + w2B

iBl

+ (yiBl + ylBi)
]
× (3.12)[

2σ0l +
2(k + 1)A0l

mA

+
(k + 1) {4(k + 1)− 2m}

m2A2
AlA0

−2k

β
β0l +

2k(2k + 1)

β2
blβ0

+
4σ0(k + 1)Al

mA
− 4kσ0bl

β

−4k(k + 1)

mβA
(Alβ0 +A0bl)

−2σxl − 2(k + 1)Axl

mA
+

2kβxl

β

]
.

Proposition 3.2 : Let F̄ =

eσ(x) Fk+1

βk be a non-Riemannian gen-
eralized Kropina conformal change of
m-th root metric F on a manifold of di-
mension n ≥ 2, with m ≥ 3. Then the
spray coefficients Ḡi of F̄n are given by
equation (3.12).
Remark 3.1 We see that the metric
tensors ḡij and ḡij of F̄n are not neces-
sarily rational functions of y, but spray
coefficients Ḡi of F̄n are rational func-
tions of y.

4 Einstein metrics

In Finsler geometry, the flag curva-
ture is an analogue of sectional curva-
ture in Riemannian geometry. A nat-
ural problem is to study and charac-
terize Finsler metrics of constant flag
curvature. There are only three local
Riemannian metrics of constant sec-
tional curvature, up to a scaling. How-
ever there are lots of non-Riemannian
Finsler metrics of constant flag curva-
ture. For example, the Funk metric is
positively complete and non-reversible
with K = 1

4 and the Hilbert-Klein
metric is complete and reversible with

K = 1. Clearly, if a Finsler metric is
of constant flag curvature, then it is an
Einstein metric.

For a Finsler metric F , the Rie-
mann curvature Ry : TxM → TxM
is defined by Ry(u) = Rik(x, y)uk ∂

∂xi ,

u = uk ∂
∂xi , where

Rik = 2
∂Gi

∂xk
− yj ∂2Gi

∂xj∂yk

+2Gj
∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
. (4.1)

The Finsler metric F = F (x, y) is said
to be of scalar curvature if there is a
scalar function K = K(x, y) such that

Rik = K(x, y)F 2

{
δik −

Fyky
i

F

}
.

(4.2)
The Ricci curvature of Finsler metric
F is a scalar function Ric : TM → R,
defined to be the trace of Ry, i.e.,

Ric(y) := Rkk(x, y).

A Finsler metric F on an n-
dimensional manifold M is called an
Einstein metric if there is a scalar func-
tion K = K(x) on M such that

Ric = K(n− 1)F 2.

A Finsler metric is said to be Ricci-flat
if Ric = 0.
In view of definition of Riemann curva-
ture, Ricci curvature and remark 3.1,
we have

Lemma 4.1 Let F̄ = eσ(x) Fk+1

βk be a
non-Riemannian generalized Kropina
conformal change of m-th root metric
F on a manifold of dimension n ≥ 2,
with m ≥ 3. Then R̄ik and R̄ic = Rkk
are rational function of y.

By definition, every 2-dimensional Rie-
mann metric is an Einstein metric, but
generally not of Ricci constant. In di-
mension n ≥ 3, the second Schur’s
Lemma ensures that every Rieman-
nian Einstein metric must be Ricci
constant. In particular, in dimension
n = 3, a Riemann metric is Einstein if
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and only if it is of constant sectional
curvature.

Proof of Theorem 1.1 By Lemma
4.1, R̄ic is a rational function of y.
Suppose F̄ is an Einstein metric, that
is, R̄ic = K(n − 1)F̄ 2 and F̄ 2 is not a
rational function because m - (k + 1).
Therefore K = 0. �
We obtain

Corollary 4.1 Let F̄ = eσ(x) Fk+1

βk

be a non-Riemannian generalized
Kropina conformal change of m-th root
metric on a manifold of dimension
n ≥ 2, where m ≥ 3 and m - (k + 1).
If F̄ is of constant flag curvature K,
then K = 0.

5 Weak Einstein met-
rics

A weak Einstein metric is generaliza-
tion of Einstein metric. A Finsler met-
ric F is called a weak Einstein metric
if its Ricci curvature Ric is in the form
Ric = (n−1)( 3θ

F +λ)F 2, where θ is a 1-
form and λ = λ(x) is a scalar function.
In general, a weak Einstein metric is
not necessarily an Einstein metric and
vice versa.
Proof of Theorem 1.2. Suppose F̄
is a weak Einstein metric, then

Ric = (n− 1)(3θF̄ + λF̄ 2).

By Lemma 4.1, R̄ic is rational function
of y. Therefore, we have:
If λ 6= 0, we get

F̄ =
−3(n−1)θ±

√
9(n−1)2θ2+4(n−1)λR̄ic

2(n−1)λ .

On the other hand,

F̄ =
(ai1i2...im (x)yi1yi2 ...yim)

k+1
m

βk , so we
get (

ai1i2...im(x)yi1yi2 ...yim
) k+1

m =(
−3(n−1)θ±

√
9(n−1)2θ2+4(n−1)λR̄ic

2(n−1)λ

)
βk.

Here the left hand side is purely irra-
tional for m ≥ 3 and m - (k+1). Then
right hand side will be irrational if and
only if θ = 0. Thus we have, F̄ is an
Einstein metric. Using theorem 1.1, we
obtain R̄ic = 0. �

6 Scalar flag curvature

For a tangent plane P=span(y,u),
where y and u are linearly indepen-
dent vectors of tangent space TxM of
M at point x ∈ M , the flag curvature
K(x, y, P ) with pole vector y is defined
by

K(x, y, P ) :=

gy(Ry(u), u)

gy(y, y)gy(u, u)− gy(y, u)gy(y, u)
,

where u ∈ P.
If K(x, y, P ) = K(x, y), then the
Finsler metric is said to be of scalar
flag curvature.
If K(x, y, P ) = K(x), then the Finsler
metric is said to be of isotropic flag cur-
vature.
If K(x, y, P ) = 3θ

F + c(x), where c =
c(x) is a scalar functions on M and θ
is an exact form on M , then the Finsler
metric F is said to of almost isotropic
flag curvature.
That is, F is called of almost isotropic
flag curvature if

K =
3cxmym

F
+ λ, (6.1)

where c = c(x) and λ = λ(x) are some
scalar functions on M .
If K(x, y, P ) = constant, then the
Finsler metric is said to be of constant
flag curvature.
F is of weakly isotropic flag curvature
if

K =
3θ

F
+ λ, (6.2)

where θ is an 1-form and λ = λ(x) is a
scalar function.
Clearly, if a Finsler metric is of weakly
isotropic flag curvature, then it is a
weak Einstein metric.
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Lemma 6.1 Let F̄ = eσ(x) Fk+1

βk be a
non-Riemannian generalized Kropina
confomal change of m-th root metric
on a manifold of dimension n ≥ 2,
where m ≥ 3 and m - (k + 1). If F̄
is of almost isotropic flag curvature K,
then K = 0.

The S-curvature S = S(x, y) in Finsler
geometry has been introduced by Z.
Shen [11] as a non-Riemannian quan-
tity, defined as

S(x, y) =
d

dt
[τ(σ(t), σ̇(t))]|t=0

, (6.3)

where τ = τ(x, y) is a scalar func-
tion on TxM\{0}, called distortion of
F and σ = σ(t) be the geodesic with
σ(0) = x and σ̇(0) = y.
A Finsler metric F is called of isotropic
S-curvature if

S = (n+ 1)cF, (6.4)

for some scalar function c = c(x), on
M .

Theorem 6.1 ([5]) Let (M,F ) be
an n-dimensional Finsler manifold of
scalar flag curvature K(x, y). Suppose
that the S-curvature is isotropic, then
there is a scalar function λ(x) on M

such that K = 3cxmym

F + λ. In Par-
ticular, c(x) = c is a constant if and
only if K = K(x) is a scalar function
on M .

In dimension n ≥ 3, a Finsler met-
ric F is of isotropic flag curvature if
and only if F is of constant flag curva-
ture by Schur’s Lemma. In general, a
Finsler metric of weakly isotropic flag
curvature and that of isotropic flag
curvature are not equivalent.
Proof of Theorem 1.3 By lemma 6.1
and theorem 6.1, complete the proof of
the theorem 1.3. �
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