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Introduction and preliminaries.  

The set of positive real numbers is not 

complete with respect to usual metric. To 

overcome this difficulty, in 2008, Bashirov et 

al. [5] introduced the concept of multiplicative 

metric spaces as follows:                                                                                                                                                            

Definition1.1. ([5]) Let X be a non-empty set. 

A multiplicative metric is a mapping 

 d: X×X → ℝ+ satisfying the following 

conditions: 

(i) d(x, y) ≥ 1 for all x, y ∈ X and d(x, y) = 1 if 

and only if x=y; 

(ii) d(x, y) = d(y, x) for all x, y ∈ X;  

(iii) d(x, y) ≤ d(x, z). d(z, y) for all x, y, z ∈ X 

(multiplicative triangle inequality). 

Then mapping d together with X i.e., (X, d) is 

known as multiplicative metric spaces. 

Example1.2.([5]) Let Rn
+ be the collection of 

all n-tuples of positive real numbers.  

Let 𝑑∗: ℝn
+ × ℝn

+ → ℝ be defined as follows: 

      𝑑∗ (x, y) =   
𝑥1

𝑦1
 
∗

 .  
𝑥2

𝑦2
 
∗

 …  
𝑥𝑛

𝑦𝑛
 
∗

 , 

where  x=(𝑥1,. . . ,𝑥𝑛 ) , y=(𝑦1, . . . ,𝑦𝑛 ) ∈ ℝn
+ and 

 .   : ℝ+ → ℝ+ is defined by 

     𝑎  ∗ =  
𝑎     𝑖𝑓 𝑎 ≥ 1;
1

𝑎
      𝑖𝑓 𝑎 < 1.

  

Then (X, d) is a multiplicative metric space. 

Example1.3. ([10]) Let d: ℝ × ℝ→ [1, ∞) be 

defined by  

      d(x, y) = 𝑎 𝑥−𝑦  ,where x, y ∈ ℝ and a > 1. 

Then d(x, y) is multiplicative metric and (X, d) 

is a multiplicative metric space. We may call it 

usual multiplicative metric spaces. 

In 2015, M. Abbas et.al. introduced the 

notion of multiplicative absolute value 

function as follow: 

Definition 1.4.([2]) A multiplicative absolute 

value function |⋅|: ℝ →ℝ+ is defined as 

|𝑥| = 

 
 
 

 
 

𝑥       𝑖𝑓                  𝑥  ≥1 
1

𝑥
      𝑖𝑓       𝑥  ∈(0,1)     

1         𝑖𝑓    𝑥 = 0 

−
1

𝑥
       𝑖𝑓    𝑥  ∈(−1,0)      

−𝑥                    𝑖𝑓    𝑥  ≤−1

 .  

Proposition 1.5.([2]) For arbitrary 𝑥, 𝑦 ∈ 

ℝ+,the multiplicative absolute value function 

|⋅| : ℝ+ →ℝ+satisfies the following: 

(1)  |𝑥| ≥ 1. 

(2) 𝑥 ≤ |𝑥|. 

(3) 1/|𝑥| ≤ 𝑥 if 𝑥 > 0 and 𝑥 ≤ 1/|𝑥| if 𝑥 ≤ 0. 

(4) |𝑥⋅𝑦| ≤ |𝑥||𝑦|. 

One can refer to ([10]) for detailed 

multiplicative metric topology. 

Definition1.6.([7]) Let (X, d) be a 

multiplicative metric space. A sequence {𝑥𝑛 } in 

X said to be a 

(i) multiplicative convergent sequence to x, if 

for every multiplicative open ball 

 𝐵𝜖 (x) = { y | d(x, y) < ϵ} , ϵ > 1, there exists a 

natural number N such that  𝑥𝑛  ∈ 𝐵𝜖 (x) for all  

n ≥ N, i. e, d(𝑥𝑛 , 𝑥) → 1 as n → ∞. 

(ii) multiplicative Cauchy sequence if for all ϵ > 

1, there exists N ∈ ℕ such that d(𝑥𝑛 , 𝑥𝑚 ) < ϵ                                      

for all m, n > N i. e , d(𝑥𝑛 , 𝑥𝑚 ) → 1 as n → ∞. 

A multiplicative metric space is called 

complete if every multiplicative Cauchy 

sequence in X is multiplicative convergent to  

x ∈ X. 
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In 2012, Ozavsar gave the concept of 

multiplicative contraction mapping and proved 

some fixed point theorem for these maps in 

complete multiplicative metric spaces.  

Definition1.7.([7]) Let (X, d) be a 

multiplicative metric space. The map f : X → X 

is called a multiplicative contraction if there 

exists a real constant λ ∈ [0, 1) such that                                     

(1.1) d(f(𝑥1), f(𝑥2)) ≤ (d(𝑥1 , 𝑥2))λ for all x, y ∈ X. 

Consider the k-th order nonlinear difference 

equation 

 𝑥𝑛+𝑘= f (𝑥𝑛 , ..., 𝑥𝑛+𝑘−1), n ∈ℕ  with the initial 

values 𝑥0, 𝑥1, ..., 𝑥𝑘  ∈ X, where (X, d) is a 

metric space, k ∈ N, k ≥ 1 

and f : 𝑋𝑘  → X.  

Equation (1.1) can be studied for fixed point 

theory in view of the fact that 

 𝑥∗∈ X is a solution of (1.1) if and only if 𝑥∗ is a 

fixed point of f , that is, 𝑥∗= f (𝑥∗, ..., 𝑥∗). 

Definition 1.8. Let (X, d) be a metric space, 𝑘 

a positive integer, and 

 𝑓: 𝑋𝑘→𝑋 and 𝑔:𝑋 → 𝑋 mappings. 

 (b) An element 𝑥 ∈ 𝑋 is said to be a fixed point 

of 𝑓 if x = (𝑥,...,). 

 (c) If 𝑥 = 𝑔𝑥 = f(𝑥,...,𝑥),then 𝑥 is called a 

common fixed point of 𝑓and𝑔. 

(d) Mappings 𝑓and 𝑔are said to be commuting 

if ((𝑥,...,)) = 𝑓(𝑔𝑥,...,𝑔𝑥) , for all 𝑥 ∈ 𝑋. 

(f) Mappings f and g are said to be weakly 

commuting if  

     d(f(g(x, x, ...x)),g(fx, fx, ...fx)) ≤ d(f(x, x, 

...x),g(x, x, ...x)) for all x ∈ X. 

(b) An element 𝑥 ∈ 𝑋 is said to be a coincidence 

point of 𝑓and 𝑔 if 𝑔𝑥 = (𝑥,...,). 

(e) Mappings𝑓 and 𝑔are said to be k-

compatible (coincidentally commuting)   

if  g (f(p, p, . . . , p)) = f(gp, gp, . . . , gp),  

whenever  p ∈ X is such that gp = f (p, p, . . . , 

p). 

Remark 1.09. The above definition are used 

in similar mode multiplicative metric spaces. 

Remark 1.10. For k=1, the above definitions 

reduce to the usual definition of commuting 

and weakly compatible mappings in a 

multiplicative metric space. 

In 1965, S.B. Presic in [8] gives the 

most important results on this direction by 

generalizing the Banach contraction mapping 

principle as follows: 

Theorem 1.11. ([8]). Let (X, d) be a complete 

metric space, k a positive integer and 

T : 𝑋𝑘→ X a mapping satisfying the following 

contractive type condition 

(1.2.1)  d(T (𝑥1, 𝑥2, ..., 𝑥𝑘 ), T (𝑥2, 𝑥3, ..., 𝑥𝑘+1)) ≤ 

𝑞1d(𝑥1, 𝑥2) + 𝑞2d(𝑥2, 𝑥3) + ... + 𝑞𝑘d(𝑥𝑘 , 𝑥𝑘+1) for 

every 𝑥1, 𝑥2, 𝑥3, ..., 𝑥𝑘 , 𝑥𝑘+1in X, where 𝑞1, 𝑞2, 

..., 𝑞𝑘  are non -negative constants such that 

𝑞1+ 𝑞2+ ...+ 𝑞𝑘   < 1. 

Then there exists a unique point x in X such 

that T (x, x, ..., x) = x. 

Moreover, if 𝑥1, 𝑥2, ..., 𝑥𝑘  are arbitrary points in 

X and for n ∈ N , 𝑥𝑛+𝑘  = T (𝑥𝑛 , 𝑥𝑛+1, ..., 𝑥𝑛+𝑘−1) 

then the sequence {𝑥𝑛 } is convergent and lim𝑥𝑛  

=T (lim𝑥𝑛 , lim𝑥𝑛 , ..., lim𝑥𝑛 ). 

2. Main results 

Now we prove above theorem in setting of 

multiplicative metric space as follows: 

In 2011, R. George, M. S. Khan[6] 

proved following theorem in metric spaces as 

follows: 

Theorem 2.1.[6] Let(X, d) be a metric space, k 

a positive integer, T: 𝑋𝑘→X and 

 f: X→X be mappings satisfying the following 

conditions : 

(2.1)  T(𝑋𝑘 )⊂ f(x)                                                                                            

(2.2)  d(T(𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑘 ),T(𝑥2, 𝑥3, 𝑥4, . . . , 

𝑥𝑘 , 𝑥𝑘+1)) ≤ λ max{d(f𝑥𝑖 , f 𝑥𝑖+1) ∶  1 ≤  i ≤  k},   

where 𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑘 , 𝑥𝑘+1are arbitrary 

elements in X and λ ∈ (0,1) 

(2.3)  f(X)is complete .                                                                 

Then C(f, T) ≠ ∅.  

Further, if f is idempotent at some u ∈ C(f, T), 

and f and T are coincidentally commuting 

then f and T has a common fixed point. 

The set of coincidence points of f and T is 

denoted by C(f, T). 

Theorem 2.2 Let (X, d) be a multiplicative 

metric space, k a positive integer,  

let T be a mapping of 𝑋𝑘 into X and let f be a 

mapping of X into X satisfying  

(2.4)   T (𝑋𝑘 ) ⊆ f (X), 

(2.5)   f (X) is complete , 

(2.6)   (f, T) is a are coincidentally commuting 

and f is idempotent , 
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(2.7)  d(T (𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑘 ), T (𝑥2, 𝑥3, 𝑥4, . . . , 

𝑥𝑘 , 𝑥𝑘+1)) 

≤ [max{d(f𝑥𝑖 , f 𝑥𝑖+1) ∶  1 ≤  i ≤  k}]λ , for all 𝑥1, 𝑥2, 

𝑥3, . . . , 𝑥𝑘 , 𝑥𝑘+1 ∈ X, where 0 < λ < 1, 

(2. 8)    d(T (u, u, . . . , u), T (v, v, . . . , v)) < d(f 

u, f v), for all distinct u, v ∈ X.  

Then there exists a unique point z ∈ X such 

that fz = z = T (z, z,  . . .  , z). 

Proof. Let 𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑘  be arbitrary 

elements in X. By (2.4),  

we define a sequence {𝑦𝑛 }in f(X) as follows : 

𝑦𝑛+𝑘= f(𝑥𝑛+𝑘 )=T(𝑥𝑛 , 𝑥𝑛+1, ... 𝑥𝑛+𝑘−1), for n=1,2, 

..... 

For simplicity set α𝑛  = d(𝑦𝑛 , 𝑦𝑛+1). We shall 

prove by induction that for each n ∈ N: 

α𝑛  ≤ Kθ
𝑛
   (where θ = (𝜆)

1
𝑘  <1 , K = max{(α1)

1
θ , 

(α2)
1

θ
2 
, . . . , (α𝑘)

1
θ

𝑘 
}               

According to the definition of K we see that 

(2.11) is true for n = 1, . . . , k.  

Now let the following k inequalities: α𝑛  ≤ Kθ
𝑛
 , 

α𝑛+1 ≤ Kθ
𝑛 +1

   , . . . , α𝑛+𝑘−1 ≤ Kθ
𝑛 +𝑘−1

 be the 

induction hypotheses.  

Then we have: 

α𝑛+𝑘  =  d(y𝑛+𝑘 , y𝑛+𝑘+1) = d(T (𝑥𝑛 , 𝑥𝑛+1, . . . , 

𝑥𝑛+𝑘−1), T (x𝑛+1, x𝑛+2, . . . , x𝑛+𝑘 )) 

≤ max{d(f𝑥𝑛 , f𝑥𝑛+1), d(f 𝑥𝑛+1 , f 𝑥𝑛+2), . . . d(f 𝑥𝑛+𝑘−1 , f 𝑥𝑛+𝑘)}λ 

= [max{α𝑛 , α𝑛+1 , . . . α𝑛+𝑘−1}]λ  

≤ [max{Kθ
𝑛

, Kθ
𝑛 +1

, . . . Kθ
𝑛 +𝑘−1

}]λ  

≤ [Kθ
𝑛

]λ {as θ < 1} 

=  Kθ
𝑛 +𝑘

{as λ = θ
𝑘
} 

Thus inductive proof of (2.5) is complete. Now, 

for n, p ∈ N, we have 

d(𝑦𝑛 , 𝑦𝑛+𝑝 ) ≤ d(𝑦𝑛 , 𝑦𝑛+1).d(𝑦𝑛+1, 𝑦𝑛+2).....d(𝑦𝑛+𝑝−1, 

𝑦𝑛+𝑝 ) 

                   ≤ Kθ
𝑛
. Kθ

𝑛 +1
..... Kθ

𝑛 +𝑝−1
 

                    ≤ Kθ
𝑛 (1+θ+θ

2+⋯ )  

                    ≤ K
θ

𝑛

1−θ
 

 . 

Hence sequence {𝑦𝑛 } is a Cauchy sequence in 

f(X). As f(X) is complete, there exists z ∈ f(X) 

such that lim𝑛→∞ 𝑦𝑛= z. Hence there exists a 

point p ∈ X such that z = f p. 

Now consider 

d(f x𝑛+𝑘 , T (p, p, . . . , p)) = d(T (p, p, . . . , p), T 

(𝑥𝑛 , 𝑥𝑛+1, . . . , x𝑛+𝑘−1)) 

≤ d(T (p, p, . . . , p), T (p, p, . . . , p, 𝑥𝑛 )).d(T (p, 

p, . . . , p, 𝑥𝑛 ), T (p, p, . . . , p, 𝑥𝑛 , 𝑥𝑛+1)) 

. d(T (p, p, . . . , p, 𝑥𝑛 , 𝑥𝑛+1), T (p, p, . . . , p, 𝑥𝑛 , 

𝑥𝑛+1, 𝑥𝑛+2)).d(T (p, p, . . . , p, 𝑥𝑛 , 𝑥𝑛+1, 𝑥𝑛+2), T 

(p, p, . . . , p, 𝑥𝑛 , 𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑛+3)). . . . . d(T (p, 

𝑥𝑛 , 𝑥𝑛+1, . . . , 𝑥𝑛+𝑘−2), T (𝑥𝑛 , 𝑥𝑛+1, . . . , 𝑥𝑛+𝑘−1)). 

≤  [d(f p, f𝑥𝑛 ) ]λ. [max{d fp, f𝑥𝑛 , d f𝑥𝑛 , f 𝑥𝑛+1 } ]λ 

.[max{d(f p, f 𝑥𝑛 ), d(f 𝑥𝑛 , f 𝑥𝑛+1), d(f 𝑥𝑛+1, f 𝑥𝑛+2)}]λ.

 [max{d(f p, f𝑥𝑛), d(f𝑥𝑛 , f 𝑥𝑛+1), d(f 𝑥𝑛+1 , f 𝑥𝑛+2), d(f 𝑥𝑛+2, f 𝑥𝑛+3)}]λ

. . . . 

.

 [max{d(f p, f 𝑥𝑛 ), d(f𝑥𝑛 , f 𝑥𝑛+1), . . . , d(f 𝑥𝑛+𝑘−2, f 𝑥𝑛+𝑘−1)}]λ

. 

Letting n → ∞, we get 

d(fp, T (p, p, . . . , p)) ≤ 1, so that f p = T (p, p, . 

. . , p).  

Now suppose that f is idempotent, while f and 

T  are coincidentally commuting pair. Then 

,we have ffp = fp and f (T (p, p, . . . , p)) = T(f p, 

f p, . . . , f p). Therefore, fp = ffp=  f (T (p, p, . . . 

, p)) = T(f p, f p, . . . , f p). Thus  fp is a 

common fixed point of f and T .We now have z 

= fz = T (z, z, . . . , z). 

Uniqueness: 

Suppose that there exists a point 𝑧 ′ ≠ z in X 

such that 𝑧 ′= f𝑧 ′= T (𝑧 ′, 𝑧 ′, . . . , 𝑧 ′). 

Then d(z, 𝑧 ′) = d(T (z, z, . . . , z), (T (𝑧 ′, 𝑧 ′, . . . , 

𝑧 ′)) < d(f z, f𝑧 ′) from (2.8) = d(z, 𝑧 ′),which is a 

contradiction. 

                                                                                  

Therefore z = 𝑧 ′. Hence z is the unique point 

fixed point. 
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