BIOLOGICAL ACTIONS OF NITRIC OXIDE IN FISH PHYSIOLOGY

Authors

  • AMAR, V. SINGH, TRIPATHI Department of Animal Science, M. J. P. Rohilkhand University, Bareilly-243006, India.

Keywords:

Nitric oxide (NO) is a free radical gaseous molecule that has a widespread distribution in different biological system, shows its ubiquity. Nitric oxide synthase (NOS) is an enzyme which produces NO from L-arginine, exists in three isoforms. NO and its sy

Abstract

Nitric oxide (NO) is a free radical gaseous molecule that has a widespread distribution in different biological system, shows its ubiquity. Nitric oxide synthase (NOS) is an enzyme which produces NO from L-arginine, exists in three isoforms. NO and its synthetic enzymes have been implicated in a variety of biological activities and mediates its effect through the activation of soluble guanylate cyclase. The biological actions of NO are described in terms of proper muscle growth, osmoregulation, reproduction and immunity. In this paper some aspects are described and provides an overview on the NO and its biological actions in fishes. Finally, using fish as efficient, cost-effective model system, NO/NOS system is discussed.

References

Alderton, W. K., Cooper, C. E., Knowles, R. G., Nitric oxide synthases : structure, function and inhibition. Biochem. J., 2001, 357, 593-615.

Alfei, L., Onali, A., Spano, L., Colombari, P.T., Altavista, P.L., De Vita, R., PCNA/cyclin expression and BrdU uptake define proliferating myosatellite cells during hyperplastic muscle growth of fish (Cyprinus carpio L). Eur. J. Histochem., 1994, 38, 151-162.

Banos, N., Planas, J. V., Gutierrez, J., Navarro, I. Regulation of plasma insulin-like growth factor-I levels in brown trout (Salmo trutta). Comp. Biochem. Physiol., 2000, 124 C, 33-40.

Barroso, J. B., Carreras, A., Esteban, F. J., Peinado, M. A., Martinez-lara E. Valderrama, R., Jimenez, A., Rodrigo, J., Lupianez, J. A., Molecular and kinetic characterization and cell type location of inducible nitric oxide synthase in fish Am J Physiol Regulatory Integrative Comp Physiol., 2000, 279, R650–R656.

Brown, C.R., Cameron, J.N., The relationship between specific dynamic action (SDA) and protein synthesis rates in the channel catfish. Physiol. Zool., 1991a, 64, 298-309.

Bush, P. A., Gonzales, N. E., Griscavage, J. M., Ignarro, L. J., Nitric oxide synthase from cerebellum catalyses the formation of equimolar quantities of nitric oxide and citrulline from L-arginine. Biochem. Biophys. Res. Commun., 1992, 185, 960–966.

Carneiro, N. M., Navarro, I., Gutierrez, J., Plisetskaya, E. M., Hepatic extraction of circulating insulin and glucagon in brown trout (Salmo trutta fario) after glucose and arginine injection. J. Exp. Zool., 1993, 267, 416-422.

Creech, M. M., Arnold, E. V., Boyle, B., Muzinich, M.C., Montville, C., Bohle, D. S., Atherton, R. W., Sperm motility enhancement by nitric oxide produced by the oocytes of fathead minnows, Pimephelas promelas. J. Androl., 1998, 19, 667–674.

Dixit, V. D., Parvizi, N., Nitric oxide and the control of reproduction. Anim. Reprod. Sci., 2001, 65, 1–16.

Ebbesson, L. O. E., Tipsmark, C. K., Holmqvist, B., Nilsen, T., Andersson, E., Stefansson, S. O., Madsen, S. S. Nitric oxide synthase in the gill of Atlantic salmon: colocalization with and inhibition of Na+,K+-ATPase. J. Exp. Biol., 2005, 208, 1011-1017.

Evans, D. H., Cell signaling and ion transport across the fish gill epithelium, J. Exp. Zool., 2002, 293, 336–347.

Evans, D. H., Rose, R. E., Roeser, J. M., Stidham, J. D., NaCl transport across the opercular epithelium of Fundulus heteroclitus is inhibited by an endothelin to NO, superoxide, and prostanoid signaling axis. Am J Physiol Regul Integr Comp Physiol., 2004, 286, R560–R568.

Gibbins, I. L., Olsson, C., Holmgren. S., Distribution of neurons reactive for NADPH-diaphorase in the branchial nerves of a teleost fish, Gadus morhua. Neurosci Lett., 1995, 193, 113–116.

Houlihan, D.F., Hall, S.J., Gray, C., Effects of ration on protein turnover in cod. Aquaculture., 1989, 79, 103-110.

Houlihan, D.F., Carter, C.G., McCarthy, I.D., Protein synthesis in fish. In: Hochachka, P.W., Mommsen, T.P. (Eds.), Biochemistry and Molecular Biology of Fishes, vol. 4. Metabolic Biochemistry. Elsevier Biomedical, Amsterdam, 1995, pp. 191-220.

Ignarro, L. J., Biosynthesis and metabolism of endothelium-derived nitric oxide. Annu. Rev. Pharmacol. Toxicol., 1990, 30, 535–560.

Klatt, P., Schmidt, K., Uray, G., Mayer, B., Multiple catalytic functions of brain nitric oxide synthase. Biochemical characterization, cofactor-requirement and role of NG-hydroxy-L-arginine as an intermediate. J. Biol. Chem., 1993, 268,781-787.

Knowles, R. G., Moncada, S., Nitric oxide synthases in mammals. Biochem. J., 1994, 298, 249–258.

Lundberg, J. O., Weitzberg, E., Gladwin, M. T., The nitrate–nitrite–nitric oxide pathway in physiology and therapeutics. Nat. Rev., drug discovery, 2008, 7, 156-167.

Marletta, M. A., Nitric oxide synthase structure and mechanism. J. Biol. Chem., 1993, 268, 12231-12234.

Mauceri, A., Fasulo, S., Ainis, L., Licata, A., Lauriano, E. R., Martinez, A., Mayer, B., Zaccone, G., Neuronal nitric oxide synthase (nNOS) expression in the epithelial neuroendocrine cell system and nerve fibers in the gill of the catfish, Heteropneustes fossilis. Acta Histochem. 1999, 101, 437–448.

McCarthy, I.D., Houlihan, D.F., Carter, C.G., Individual variation in protein turnover and growth efficiency in rainbow trout, Oncorhynchus mykiss (Walbaum). Proc. R. Soc. Lond. B., 1994, 257, 141-147.

Nathan, C. F., Xie, Q.W., Nitric oxide synthases: roles, tolls, and controls. Cell, 1994, 78, 915–918.

Negatu, Z. Meier, A. H., In vitro incorporation of [14C] glycine into muscle protein of gulf killifish (Fundulus grandis) in response to insulinlike growth factor-I. Gen. Comp. Endocrinol., 1995, 98, 193-201.

nee Pathak, N.D., Lal, B., Nitric oxide: An autocrine regulator of Leydig cell steroidogenesis in the Asian catfish, Clarias batrachus. Gen. Comp. Endocrinol., 2008, 158, 161–167.

nee Pathak, N.D., Lal, B., Paracrine role of macrophage produced-nitric oxide (NO) in Leydig cell steroidogenesis in a teleost, Clarias batrachus: Impact of gonadotropin, growth hormone and insulin on NO production by testicular macrophages. Gen. Comp. Endocrinol., 2009, 160, 12-18.

Schoor, W. P., Plumb, J. A., Induction of nitric oxide synthase in channel catfish Ictalurus punctatus by Edwardsiella ictaluri. Dis. aquat. Org., 1994, 19, 153-155.

Schindler, H., C. Bogdan., NO as a signaling molecule: effects on kinases. Int. Immunopharmacol., 2001, 1, 1443–1455.

Shapiro, B. M., Cook, S., Quest, A. F. G., Oberdof, J., Wothe, D., Molecular mechanisms of sea-urchin sperm activation before fertilization. J. Reprod. Fertil 1990, 42(Suppl), 3–8.

Stamler, J. S., Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell., 1994, 78, 931–936.

Tipsmark, C. K. Madsen, S. S. Regulation of Na+/K+-ATPase activity by nitric oxide in the kidney and gill of the brown trout (Salmo trutta). J. Exp. Biol., 2003, 206, 1503-1510.

Tripathi, V., Krishna, A., Changes in nitric oxide (NO) synthase isoforms and NO in the ovary of Heteropneustes fossilis (Bloch.) during the reproductive cycle. J. Endocrinol., 2008, 199, 307–316.

Ward, G. E., Garbers, D. L., Vacquier, V. D., Effects of extracellular egg factors on sperm guanylate cyclase. Science, 1985, 227, 768–770.

Downloads

Published

2014-10-31

Issue

Section

Social Science & Humanities