PHYTOREMEDIATION POTENTIAL OF SPIRODELA POLYRHIZA (GIANT DUCKWEED) FOR THE TREATMENT OF DOMESTIC WASTE WATER AT GWALIOR (M.P.)

Authors

  • Sushil Manderia Jasra Anjum

Keywords:

Abstract

Due to rapid population growth, increasing per capita water consumption, disposal of waste material in fresh water resources and geographical disparities between centers of population growth, by ecological degradation and availability of water, water scarcity became an issue to overcome the problem. Various technologies of wastewater management, which are simple, practical, economical, environmental friendly and capable of recycling or generating resources would be most desirable (Harrison 2002).

The different selected physicochemical parameters i.e. pH, Electric Conductance, Total Dissolved Solids, Total Suspended Solids, Total Solids, Chloride, Total Hardness, Ca hardness, Mg Hardness, Total Alkalinity, Nitrates, Phosphate & Potassium were analysed with standard protocol. Phytoremediation potential of Spirodela polyrhiza were assessed before and after treatment showed good capacity to remove pollutants from the aqueous solutions. Selected physico-chemical parameters other than Dissolved oxygen were decreases in all experimental setup at various concentrations. Among all the concentrations S. polyrhiza performed well at 100% & 75% of concentration and most of the parameters showed maximum reduction in the same concentration. Also, results revealed that application of industrial waste/effluent markedly improved the soil available potassium.

The present study still need further research to investigate the role of S. polyrhiza in detail with special reference to any effect on other living forms and its potential to remove toxic chemicals present in waste water.

 

e:12.0pt'> 

 

References

APHA 2005. Standard Methods for the Examination of Water and Waste Water (21th ed.). American Public Health Association: Washington DC.

Chaudhuri, D., Majumder, A., Misra, A. K. and Bandyopadhyay, K. 2014. Cadmium Removal by Lemna minor and Spirodela polyrhiza. International Journal of Phytoremediation, 16(11): 1119-1132.

Dhasarathan, P., Gowsalya, G., Rajkumar, K. 2006. Seasonal variation in microbial population in sivakasi soil with reference to the influence of temperature. Pollution Research. 25(1): 114-118.

Dhingra, P., Singh, Y., Kumar, M., Nagar, H., Singh, K. and Meena, L. N. 2015. Study on Physico – Chemical Parameters of Waste Water Effluents from Industrial areas of Jaipur, Rajasthan, India. International Journal of Innovative Science, Engineering and Technology, 2 (5): 874-876.

Harrison, R.M., 2002. Pollution Causes Effects and Control. Fourth edition Royal Society of Chemistry. 82-84.

Kumar, P. 2013. Environmental Effect / Impact Assessment of Industrial Effulent on Ground Water. Oriental journal of chemistry. An International Open Free Access, 29: 1243-1249.

Loveson, A., Sivalingam, R. and R. S. 2013. Aquatic macrophyte Spirodelapolyrrhiza as a phytoremediation tool in polluted wetland water from Eloor, Ernakulam District, Kerala. IOSR Journal of Environmental Science, Toxicology and Food Technology, 5(1): 51-58.

Meybeck, M., Kuusisto, E., Mäkelä, A., 1996. Water Quality Monitoring - A Practical Guide to the Design and Implementation of Freshwater Quality. Studies and Monitoring Programmes United Nations Environment Programme and the World Health Organization. Chapter 2 –Water Quality.

Ray, S., Islam, S., Tumpa, D. R., Kayum, M. A. and Shuvro, S. D. 2015. A study on arsenic and copper extraction capacity of Spirodela polyrhiza from water. Journal of Civil Engineering and Construction Technology, 6(1): 1-9.

Uggetti E Llorens E Pedescoll A Ferrer I Castellnou R García J (2009). Sludge dewatering

and stabilization in drying reed beds: characterization of three full-scale systems in

Catalonia, Spain. Bioresour Technol. 100(17):3882-90.

USGS 2004. Earth's water distribution. U.S. Department of the Interior, U.S. Geological Survey

Villa, I. G., Villalobos, C. S., Sánchez, A. G., Chavez, R. C., Reynoso, F. L. and Espejo, I. A. 2016. Evaluation of the Efficiency of Duckweeds, Lemna sp. and Spirodela sp., in the Treatment of Tilapia Effluents. Journal of Agricultural Science. 8(12):188-196.

Wang, W., Yang, C.,Tang, X., Zhu, Q., Pan, K., & Cai, D., Hu, Q., and Ma, D., 2015. Carbon and energy fixation of great duckweed Spirodela polyrhiza growing in swine wastewater, Environ Sci Pollut Res, 22:15804–15811.

Table:1 : Physico-chemical analysis of different concentration of experimental setup with S. polyrhiza

S.No. Parameters Period Experimental setup

Control 25% 50% 75% 100%

pH 0days 7.32 7.64 7.73 7.92 8.33

days 7.30 7.59 7.68 7.87 8.25

days 7.28 7.40 7.58 7.76 8.00

days 7.26 7.34 7.54 7.71 7.77

EC

(S/cm3) 0days 686 896 1171 1399 1621

days 680 820 1084 1205 1060

days 615 795 1025 1060 1385

days 589 767 1061 841 1240

TDS

(mg/l) 0days 600 920 1340 1795 2160

days 560 780 1100 1530 1860

days 532 640 1030 1310 1582

days 489 521 865 1095 1245

TSS

(mg/l) 0days 60 63 68 80 89

days 51 58 56 60 78

days 48 49 46 52 60

days 40 44 41 44 55

TS

(mg/l) 0days 660 983 1408 1875 2249

days 611 838 1156 1590 1938

days 580 689 1076 1362 1642

days 529 565 906 1139 1300

TH

(mg/l) 0days 846 1706 2133 2506 2793

days 802 1465 1952 2140 2260

days 750 1280 1605 1820 2016

days 669 1093 1246 1460 1826

CaH

(mg/l) 0days 306 646 760 946 1050

days 299 509 702 650 675

days 310 455 532 560 626

days 274 453 341 355 656

MgH

(mg/l) 0days 540 1060 1373 1560 1743

days 503 956 1250 1490 1585

days 440 825 1073 1260 1390

days 395 640 905 1105 1170

Nitrates

(mg/l) 0days 3.50 4.20 6.20 8.80 10.20

days 3.40 3.98 6.01 8.50 9.00

days 2.86 3.20 5.70 8.10 8.70

days 2.30 2.70 4.60 8.00 7.80

Chloride

(mg/l) 0days 16.75 32.61 65.82 84.27 103.33

days 15.25 28.10 57.11 76 90

days 14.56 25.79 52.75 68.9 81

days 14 24 46 65 77

Alkalinity

(mg/l) 0days 120 643.33 823.33 944 1002

days 109 560 709.17 857.9 920

days 100 474 503 688.22 835.76

days 88 366 450 503 675.09

DO

(mg/l) 0days 9.50 2.20 1.40 0.90 0

days 9.80 2.20 1.80 1 0.56

days 8.70 3.15 2.76 1.61 1.02

days 9.20 4.65 3.01 2.05 1.60

COD

(mg/l) 0days 12.00 265 310 380 486

days 11.50 252 298 368 462

days 10.30 201 251 290 388

days 8.30 190 180 227 272

Phosphates

(ppm) 0days 4.16 4.52 5.98 6.45 7.50

days 4.03 4.21 5.65 6.21 7.10

days 3.88 3.97 4.72 5.62 5.40

days 3.61 3.22 4.03 4.43 3.80

Potassium

(ppm) 0days 22.00 28.00 31.76 35.87 39.7

days 21.80 27.20 30.65 34.21 38.73

days 20.50 24.40 28.54 30.11 36.50

days 19.65 21.09 26.76 26.54 32.20

Note.: EC- Electrical conductivity, TDS-Total Dissolved Solids; TSS- TDS-Total Suspended Solids; TS-Total Solids; TH- Total hardness; CaH- Calcium hardness; MgH- Magnesium hardness;

Downloads

Published

2017-06-30

Issue

Section

Articles