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1. Introduction and preliminaries

It is well know that the set of positive real
numbers R.: is not complete according to the
usual metric. To overcome this problem, in
2008, Bashirov et al. [2] introduced the
concept of multiplicative metric spaces as
follows:

Definitionl.1. ([2]) Let X be a non-empty set.
A multiplicative mapping
d: XxX — R* following
conditions:

(i) d(x,y) 2 1forall x,y € X and d(x, y) = 1 if
and only if x=y;

(i) d(x, y) = d(y, x) for all X, y € X;

(iii) d(x, y) < d(x, z). d(z, y) for all x, y, z € X
(multiplicative triangle inequality).
Then mapping d together with X i.e., (X, d) is
a multiplicative metric space.

metric is a

satisfying the

Examplel.2.([8]) Let R+ be the collection of
all n-tuples of positive real numbers.
Let d*: Re, x Rn, — R be defind as follows:

a6y = (-2 -2),

Y1

X2
y2

Xn

15,

where x=(xq,...,%,) , V=01, - . - ,¥») € R and

|.]: R+ — R+ is defined by
a ifa=1;
MP={§ if a<l.
Then it is obvious that all conditions of
multiplicative metric are satisfied.

Examplel.3. ([10]) Let d: R x R— [1, «) be
defined as

d(x, y) = a* ! 'where x, y € R and a > 1.
Then d(x, y) is a multiplicative metric and (X,
d) is called a multiplicative metric space. We
call it usual multiplicative metric spaces.

Examplel.4.([10]) Let (X, d) be a metric
space .Define a mapping da on X by
da(x, y) = a*®Y) where a > 1 is a real number
and i =ater= {1 12

The da(x, y) is
multiplicative metric and X together with
metric d, i.e., (X, da) is
known as a discrete multiplicative metric

metric called discrete

space.
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Example 1.5.([1]) Let X =C"[a, b] be the
collection of all real-valued multiplicative
continuous functions over|a, b] € R*. Then (X,
d) is a multiplicative metric space with metric
d defined by

_ sup fx)
d(f’g) - x€[ab] |g(x)

for f ,g € X.

Remarkl1.6. We note that the example 1.1 is
valid for positive real numbers and example
1.2 is valid for all real numbers.

Remark 1.7.([10]) Neither every metric is
multiplicative metric nor every multiplicative
metric is metric. The mapping d* defined
above is multiplicative metric but not metric

as it doesn’t satisfy triangular inequality.
1

Consider d*(;, J) + d'(;, 3) =3 + 6 =7.5<9 =
d'(, 3).

On the other, hand the usual metric on R is
not multiplicative metric as it doesn’t satisfy
multiplicative triangular inequality, since d(2,
3)-d(3,6)=3<4=4d4(2, 6).
One <can refer to ([8])
multiplicative metric topology.

for detailed

Definition1.8.([8]) Let (X, d) be a
multiplicative metric space. A sequence {x,} in
X said to be a

(i) multiplicative convergent sequence to x, if
for every multiplicative open ball
B.(x) ={y | dix,y) < ¢, € > 1, there exists a
natural number N such that x, € B.(x) for all
n=N,i e, d(x,x) > 1asn — .

(ii) multiplicative Cauchy sequence if for all €
> 1, there exists N € N such that d(x,,x,) < €
forallm,n > Ni. e, d(x,,x,) — 1asn — o.

A multiplicative metric space is called
complete if every multiplicative Cauchy
sequence in X is multiplicative converging to
X € X.

Remark1.9. We note that the set of positive
real numbers R: is not complete according to
the usual metric. Let X = R+ .Consider the

26

sequence x, = {%}. It is obvious {x,} is a
Cauchy sequence in X with respect to usual
metric spaces X and it is not complete metric
space as every Cauchy sequence in X does
not converge in R+ i.e., O € R:. In case of
multiplicative metric spaces, consider the

1 o
sequence x, = {a /"} ,where a >1, it is
complete in multiplicative metric spaces,
since forn =z m,
* Ual® 1 1% 11 1
X a/n fe—— _— —
d*(xn,xm)=_n__1/_ =lgn m =qm n < qm
Xm a /m
. loga
<e ifm> 292,
loge
a ifa=1;
where |a|*=41 .
lal - ifa<l.
a

This implies {x,} is a Cauchy sequence in X
and it converges to 1€ R+ as n — . Hence (X,
d) is a complete multiplicative metric space.

In 2012, Ozavsar and Cevikel[8]
introduced the concepts of Banach-
contraction, Kannan-contraction, and

Chatterjea-contraction mappings in the sense
of multiplicative metric spaces as follows:

(Banach-contraction). Let (X, d) be a
complete multiplicative metric space and let f:
X — X be a multiplicative contraction if there
exists a real constant A € [0, 1) such that

d(f(x), fy)) < d(x,y)* for all x, y € X.
Then f has a unique fixed point.

(Kannan-contraction). Let (X, d) be a
complete  multiplicative = metric  space.
Suppose the mapping f : X — X satisfies the
contraction condition

d(fx, fy) < (d(fx,x) - d(fy,y))?, for all x, y €
X, where A € [O, %).
Then f has a unique fixed point in X and for
any x € X, iterative sequence (f,,(x)) converges
to the fixed point.

(Chatterjea-contraction).
complete  multiplicative space.
Suppose the mapping f : X — X satisfies the
contraction condition

Let (X, d) be a
metric
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d(fx,fy) < (d(fy,x)-d(fx, y)} for all x, y € X,
where A € [0, ).
Then f has a unique fixed point in X and for

any X € X, iterative sequence (f,(x)) converges
to the fixed point.

2. Main results.

Now we prove some fixed point theorems for
a map that satisfy various types of rational
inequalities.

Theorem 2.1. Let (X, d)
multiplicative metric space.
mapping

f : X - X be a continuous self- mapping
satisfies the condition
d(fx,fy)<

[d )1 [dCe ). [dG ). [y, 1. [

be a complete
Suppose the

A, fy)dx £, A, f0dx ).,
dixy)  dEydoLfy)

for all x, y € X, where a,, a,,a3,a4,as5,a5 2 0
and a;+ 2a,+2aztastastag < 1
Then f has a unique fixed point in X.

Proof. Let {x,}be a sequence in X defined as
follows.

Let x, € X. For this x, there exists x; such
that f(xy) = x;. Again, for this x; there exists x,
such that f (x;) = x,. Continue like this we get
f (xn) = Xn+1-

Consider

d(xn’ xn+1) = d(Txn—l aTxn)

< [d @0 %)) [ X)) A X0y %)) [ X %)) [
<

LICTED) N LICARTE D) el CICNEY) ol CICETE) il CICNETE ) el CICTE ] i
<

6.1 Gt 2 1)1 [A (41, 2001 [ (1, 2D [A G, %,)1°
< [d (-1, %)] 12T [d (2 4, X, )] 12 TOITAATAS

d(xn7 xn+1) < [d(xn—l'xn)]ha
aitaz+az+tag <1

1—(az+az+as+as)
SimﬂarlY> d(xn—h xn) < [d(xn—Z'xn—l)]h}
2
d(xn5 xn+1) S [d(xn—Z'xn—l)]h .
Continue like this we get,
(X s Xn41) < [d(x, )]
For n > m, d(xna xm) < d(xn} xn—l) ’ d(xn—l} xn—Z) ’
' d(xm ’ xm+1)
< d(xo, xl) ptlypn—24.pm

Al f 1)1 f0 1)
(-1

as

ECYnTCRy
Gt f 1)

where h =

27

< d(xg,x;) 1= . This implies d(x,, x,,) —1 as n,
m — oo,
Hence (x,) is a Cauchy sequence. By the
multiplicative completeness of X, there is z €
X such that x,, —» z as n —oo.
Now we show that z is fixed point of f by
assuming f is continuous or not continuous.
(i) fis continuous, since x, — z (n —w) and f
is  continuous lim, ., f x,=
lim,,_, x, 1= 2, i.e., z is a fixed point of f.
(ii) fis not continuous then

d(fz, z) < d(fx,,fz). d(fx,2)

so, fz =

<

d(z,f2)d (xXn.fXn) d(zfxn)d (Xn.fXn)
(A1 [ N [A(F %, DI (2, 2] [FE )y, 20,

d(fz, z) < [d(z, fz)]%2t*41957% gives fz = z, i.€., z

is a fixed point of f.

Uniqueness: Suppose
fixed point of f, then
d(z, w) = d(fz, fw)
S @) [dCz, )] [d(Fz, w17, [d(fw, w)) . [LLteldes, [ DRG] oo
d(z, w) < [d(z,w)]?1*%2*%5 this implies that d(z,
w)=1lie.,, z=w.
Hence f has a unique fixed point .
Cor.1.Putting a, = a3 = a4 = a5 =ag = O gives
Banach-contraction[8] in the sense of
multiplicative metric spaces.
Let (X, d) be a complete multiplicative metric
space and let f: X — X be a multiplicative
contraction if there exists a real constant a; €
[0, 1) such that

d(f(x), f(y)) < d(x,y)* for all x, y € X.
Then f has a unique fixed point.

z, W (z # w) be two

Cor.2.Putting a, =az = a4, = a5 =0, a; = as
gives Kannan-contraction[8] in the sense of
multiplicative metric spaces.

Let (X, d) be a complete multiplicative metric
space. Suppose the mapping f : X — X
satisfies the contraction condition

d(fx,fy) < (d(fx,x) - d(fy,y))%, for all x, y € X,
where a; € [O, %).

Then f has a unique fixed point in X and for
any x € X, iterative sequence (f,(x)) converges
to the fixed point.
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Cor.3.Putting a; =a, =as = a5 =0, a, = ag
gives Chatterjea-contraction[8] in the sense of
multiplicative metric spaces.
Let (X, d) be a complete multiplicative metric
space. Suppose the mapping f : X —» X
satisfies the contraction condition

d(fx,fy) < (d(fy,x) - d(fx,y))*?, for all x, y €
X, where g, € [0, 3).
Then f has a unique fixed point in X and for
any x € X, iterative sequence (f,(x)) converges
to the fixed point.

Cor.4.Putting a, = a; = a4 = 0, gives Kholi
results[7] in the sense of multiplicative metric
spaces as follows:

Let (X, d) be a complete multiplicative metric
space. Suppose the mapping f : X —» X be a

continuous self- mapping satisfies the
condition

d(fx, fy)<
[dGe )] [d(Fy, ). [F 52, for all x, y

€ X, where a;, a,, a; =0 and
a;t agtas < 1. Then f has a unique fixed
point in X.

Cor.5.Putting a, = a5 = a¢ = 0, gives Isufati
results [5] in the sense of multiplicative
metric spaces as follows:
Let (X, d) be a complete multiplicative metric
space. Suppose the mapping f : X — X be a
continuous self- mapping satisfies the
condition

d(fx,fy)<
[d(x, y)]* . [d(x, f)]%2. [d(fx, ¥)]%,
for all x, y € X, where a;, a,,a; = 0 and a;+
2a,+2a3 < 1.
Then f has a unique fixed point in X.

Cor.6.Putting a, = a3 = a, = ag = 0, gives
Jaggi results[6] in the sense of multiplicative
metric spaces as follows:

Let (X, d) be a complete multiplicative metric
space. Suppose the mapping f : X - X be a

28

continuous self- mapping satisfies the
condition

d(fx,fy)< [d(x, y)]*. [%]%,for all x, y €
X, where a;, a5 20 and a;+as <1

Then f has a unique fixed point in X.
Cor.7.Putting a, = a5 = a¢ = 0, a, = a3 gives

Reich results [9] in the sense of multiplicative
metric spaces as follows:

Let (X, d) be a complete multiplicative metric
space. Suppose the mapping f : X — X be a

continuous self- mapping satisfies the
condition
d(fx,fy)<  [d(x, y)]. [d(x, fy).d(fx,y)]*, for

all x, y € X, where a,, a, 2 0 and
a;+ 4a, < 1.Then f has a unique fixed point in
X.

Theorem 2.2. Let (X, d)
multiplicative metric space.
mapping

f : X - X be a continuous self- mapping
satisfies the condition

A, fod(,
d(fx, fy) < [d(x,y)]*. [%]az’

for all x, y € X, where a;, a, =2 0 and a;+ a; <
1

Then f has a unique fixed point in X.

be a complete
Suppose the

Proof. Let {x,}be a sequence in X, defined as
follows:

Let xq € X, f (xg) = xq, flx1) = x2,,f(x,) = Xpy1-
Consider

d(xn’ xn+1) = d(Txn—1>Txn)

<

d (e fxn-1)d(xn—-1,fxn)
[d(xn—lt xn)]al' [ d(le_l'xn) : ]az

d(*Xn-1%n+1)
< [d(xn_l.xn)]“l-[ﬁ]az

<

[d(xn—lﬂ xn)]al_az- [d(xn—li xn)- d(xn+1: xn)]a2

< [ty -1, 2, )] Foz e,
[d (g1, x)] 02 T3 T047S
d(xn ’ xn+1) = [d(xn—lt xn)]h>

where h = 1a1 < 1.

—ap

Similarly, d (xn—l’ xn) < [d(xn—len—l)]h’
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d (n, Xa41) < [d (2,2

Continue like this we get,
d(xn’ xn+1] S [d(xﬂﬂxl)]hn
For n > m, d(x,, x,;) < d(x,, X,_1) - d(%p_1, Xn_2)

: d(xm ’ xm+1)

< d(xo, xl) ptlypn—24.pm

< d(xg,x;) 1+ . This implies d(x,, x,,) =1 as n,
m — oo,
Hence (x,) is a Cauchy sequence. By the
multiplicative completeness of X, there is z €
X such that x, — z (n —x).
Now we show that z is fixed point of f.
Since f is continuous and x, — z (n —x) so,
lim, ., f x,= fz = lim,_,, x,, .1= 2,
i.e., z is a fixed point of f.

Uniqueness: Suppose
fixed point of f, then
d(z, w) = d(fz, fw)

< [d(z, w)], [L2dEw) (M;'Zif?w)]az
d(z, w) < [d(z,w)]*1"92 this implies that d(z, w)
=1lie., z=w.
Hence f has a unique fixed point .

z, W (z # w) be two

Cor.1.Putting a, = 0, gives Banach-
contraction[8] results in the
multiplicative metric spaces as follows:
Let (X, d) be a complete multiplicative metric
space and let f: X — X be a multiplicative
contraction if there exists a real constant a; €
[0, 1) such that

d(f(x), f(y)) < d(x,y)* for all x, y € X.
Then f has a unique fixed point.

sense of

Cor.2.Puttingd(x,y) =1, gives Chatterjea-
contraction[8] results in the sense of
multiplicative metric spaces as follows:
Let (X, d) be a complete multiplicative metric
space. Suppose the mapping f : X —» X
satisfies the contraction condition

d(fx,fy) < (d(fy,x) - d(fx,y))?, for all x, y €
X, where a, € [O, %).

29

Then f has a unique fixed point in X and for
any x € X, iterative sequence (f,(x)) converges
to the fixed point.

Theorem 2.3. Let f be a continuous self-
mapping defined on a complete multiplicative
metric space X, further f satisfies the
following conditions

d(fx, fy) < [d(x, fx) .d(y, fy)] *t. [d(x, fy).d(y, fx)] 2.

d(x,fx) d(y,Ty)
[dCx yOI%. = 1™

d(x,fx).d(y.fy).d (y,fx).
{max {d(x, ), A, fy) , d(x fy) , d(y, ) , 2 EDECRges

forallx,y € X and 2a; +2a, +az +a, +as <
1 where aq, a,, a3, a4, as €[0,1].
Then T has unique fixed point.

Proof. Let {x,} be a sequence in X, defined as
follows:

Let xq € X, f(xg) = xq,f(x1) = x2,,f(x) = x5 41-

If x,= x,,1 for some ne N then x, is a fixed
point of f.

Taking x,# x,,,1 foralln e N

Consider

d( Xn+1> xn) = d(Txn ’Txn—l)

<[d(xn, ) - d (-1, £, 1)1 .

[d(xn: I:xn—l)' d(xn—lt fxn)] a2, [d( Xn» Xn-1 )]a3 .
[d(xn:fxn) d(xn—l:Txn—l)]a4
d(xn,Xn-1) ’

{(max {d(x, £, A1, 1), A0, B,1) , dCEyo, ) SCRE A Caca Badyas

s[d(xn: xn+1) . d(xn—lf xn)] .
[d(xn' xn)- d(xn—li xn)] 2. [d( Xn,
an—1)]a3.[d(xnan+1) d(xn—1xn)d(xnzan-1) a4

d(xpx; ) d(xp—1Xp)d (xp—1.X )-
{max (At X11) 41 %) G0 %) A1,y ) Gt ) ity

S[d(x‘ruxn+1) . d(xn—lt xn)] 1.
[d(xn+1:xn)- d(xn—lixn)] az'[d( Xn» Xn—1 )]a3‘
[d(xn'xn+1)]a4-[d(xn'xn+1)2'd(xn—lrxn)]as
d( Xn+1> xn) =
[d(xy, X 41)] @1 F944927205 [ (00, 2, )] 01 HO2FO5HA3,
d(xn’ xn+1) s [d(xn—lﬂxn)]ha
where h = —4fatistds

1—-(ai1+as+az+2as)

SimilarlY: d(xn—l: xn) < [d(xn—zrxn—l)]h’

A%, Xn41) < [d 20 %)™
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Continue like this we get,

d(x%n, Xn11) < [dCxo,x1)]"

For n > m, d(xna xm) = d(xn» xn—l) ’ d(xn—l, xn—Z) ’

: d(xm’ xm+1)
< d(xO'xl) ptlypn—24..pm
hm
< d(xg,x7) 1=+ . This implies d(x,, x,,) —»1(n, m
— 0).

Hence (x,) is a Cauchy sequence. By the
multiplicative completeness of X, there is z €
X such that x, — z (n —x).

Now we show that z is fixed point of f.

Since f is continuous and x, — z (n —x) so,
lim, ., f x,= fz = lim,_,, x,, .1= 2,

i.e., z is a fixed point of f.

Uniqueness: Suppose
fixed point of f, then
d(v, w) = d(fv, fw)

< [d(v, fv) .d(w, fw)] 1. [d(v, fw).d(w, fv)] %2.

a d(v,fv) d(w,Tw) 4
[d(v, w)]es. [FEAEETa,

z, W (z # w) be two

{max {d(v, ) , d(w, ), d(v, fw) , d(w, ), AL LR g0

d(v, w) < [d(v,w)]93+2e2%e5744 this implies that
d(v, w) = 1lie., v=w.
Hence f has a unique fixed point .
Cor.1.Putting a, = az = a, = a5 =
Kannan-contraction[8] in the
multiplicative metric spaces.
Let (X, d) be a complete multiplicative metric
space. Suppose the mapping f : X —» X
satisfies the contraction condition

d(fx,fy) < (d(fx,x) - d(fy,y))%, for all x, y € X,

where a; € [O, %).

0 gives
sense of

Then f has a unique fixed point in X.

Cor.2.Putting a, = a, = a; = 0, gives Fisher-
contraction [4] in the sense of multiplicative
metric spaces as follows:

Let f be a continuous self- mapping defined
on a complete multiplicative metric space X,
further f satisfies the following conditions
d(fx, fy) < [d(x fx) .d(y, fy)] **. [d(x, y)]*3,for all
X,y € X and 2a; + a3 < 1, where

a;, az €[0,1] .

Then T has unique fixed point.

30

Cor.3.Putting a,
Chatterjea-contraction[8]
multiplicative metric spaces.
Let (X, d) be a complete multiplicative metric
space. Suppose the mapping f : X —» X
satisfies the contraction condition

d(fx,fy) < (d(fy,x) - d(fx,y))%1, for all x, y €
X, where a; € [0, 3).

=a3 = a4 = a; = 0, gives
in the sense of

Then f has a unique fixed point in X.

Cor.4.Putting a; = a, = a4, =as = 0, gives
Banach-contraction[8] in the sense of
multiplicative metric spaces as follows:
Let (X, d) be a complete multiplicative metric
space and let f: X — X be a multiplicative
contraction if there exists a real constant a; €
[0, 1) such that

d(f(x), f(y)) < d(x,y)*3 for all x, y € X.
Then f has a unique fixed point.

Cor.5.Putting a, = as 0, gives Ciric-
contraction[3] in the sense of multiplicative
metric spaces as follows:

Let f be a continuous self- mapping defined
on a complete multiplicative metric space X,
further f satisfies the following conditions
d(fx, fy) < [d(x, fx) .d(y, fy)] “t. [d(x, fy). d(y, fx)] *2.
[d(x, y)]%,

forall x,y € X and 2a; + 2a, + az < 1 where
a;, a,, az €[0,1] .

Then T has unique fixed point.

Cor.6.Putting a; = a4 = as = 0, gives Reich-
contraction[9] in the sense of multiplicative
metric spaces as follows:
Let f be a continuous self- mapping defined
on a complete multiplicative metric space X,
further f satisfies the following conditions
d(fx, fy) < [d(x, fy).d(y, x)] *2. [d(x, y)]*3, for all
X,y € X and 2a, + a3 < 1 where

a,, az€[0,1]. Then T has unique fixed point.

Cor.7. Putting a; = a, = as = Ogives jaggi-
contraction[6] in the sense of multiplicative
metric spaces as follows:
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Let f be a continuous self- mapping defined
on a complete multiplicative metric space X,
further f satisfies the following conditions

a d(x,fx) d(y,Ty )4
dif, fy) < [d(x y)]®. [0,

for all x, y € X and a3 + a4 < 1 where as, a4
€[0,1] .
Then T has unique fixed point.

Theorem2.4. Let (X, d) be a complete
multiplicative metric space .Let T: X — X be
almost multiplicative contraction i.e.,

d(x,fx)d(y,Ty)]yq
dix, fy) s (R d(xy))P

{min {d(x, fy) , d(y, f)}}".

{min {d(x, fx) ,d(y, fy) }}, for all x, y € X where
L,jz Oand a,p,vyeE[0,1] with

a+ B +j< 1.Then T has a unique fixed point
in X.

Proof. Let {x,} be a sequence in X, defined as
follows:
Let xq € X, fxg) = x1,f(x1) = x2,,f(x) = x5 41-
If x,= x,,; for some ne N then x, is a fixed
point of f.
Taking x,# x,,1 foralln € N
Consider
d( Xn, xn+l7) = d(Txn—l'Txn)
< {[d(xn—1. fxn—1)d(xn.Txn)]}q o {d( Xy, % )}B ]

d(xn-1,%n)
{min {d(x,—1, fx,,) , dQen, -1}

{min {41, B0 1), A, ) 1)

{[d(xn—lixn)d(xn-xn+1)]}q
d(xn—-1,%n)

{min {d(x, 1, Xp11) , d (e, 21" -

{min {d(xn—l' xn) ’ d(xn'xn+1) }}]

A( %, %ns1s) S {d(Hnar, %0 )30 {d(Xog, X ))P

{{min {d(x,_1,%,) , d(2n, X 41) 3 -

Case I. When {min {d(x,_1,x,),d(, x,41)} =

d(x,_-1,x,) then

{d (2, %10, )Y < {d (20, 21, )1,

d(xn, Xn41) S [d (-1, %01,

(2.1)

where h = % < 1.

Case II. When {min {d(x,_1,x;,),d(x,, X41)} =

d(x,41,x,) then

{d( Xn» Xn+1 )}l—u = {d( Xn» Xn—1, )}B {d( Xn» Xn+1, )}}

{d( Xn—1,%n )}B

31

d(xn, xn+1) s [d(xn—lrxn)]h,
(2.2)
where h = < 1, from (2.1) and (2.2) we get

_Cl—j
:d(xn, xn+1) = [d(xn—lrxn)]h'
SimilarIY> d(xn—ly xn) = [d(xn—Z'xn—l)]h7

2
d(xn» xn+1) S [d(xn—Z’xn—l)]h .
Continue like this we get,
Ay, X 41) < [d(xo,x)]™
For n > m, d(x,, x,,,) < d(x,,, Xp_1) - d(Xp_1, Xp_2)
o d(xm: xm+1)
< d(xg,%1) R R

< d(xg,x1) fTh

implies d(x,, x,,) —1(n, m — ).
Hence (x,) is a Cauchy sequence. By the
multiplicative completeness of X, there is z €
X such that x, — z (n —x).
Now we claim that u = Tu.
d(Tu, u) < d(x,41,1). d(x,41, Tu)

< d(xp41,9). d(Tx,, Tu)

[d(xn,fxn)d(u,Tu)]
< dxneu). {#u)uu}“

{d(2,,u)}P {min {d(x,, fu) , d(u, fx,)}}" .
{min {d(x,, fx,),d(u, fu) }}

[d(xn,2xn+1)]
< dxn41,0). {T;)l}q

{min {d(x,, w) ,d(u, x,41)}}" -

{min {d(xy, %41) ,d(u, u) }Y

d(Tu, u) < 1,implies that d(Tu, u) = 1,Tu = u.
Hence u is fixed point of T.

Uniqueness can easily follow.

This

{d(xq,u)}P

Cor.l. If L = j = 0O then we get jaggi
contraction[6]in sense of multiplicative as
follows:

Let (X, d) be a complete multiplicative metric
space .Let T: X — X be multiplicative
contraction, i.e.,

d(fx, fy) < {W}ﬂ  {d(x,y)}? , for all x,

y € X where a , B € [0,1] with
a + B < 1,then T has a unique fixed point in
X.

Cor.2. If d(x, y) =1 and L = j = O then we get
Kannan contraction[8] as follows:
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Let (X, d) be a complete multiplicative metric
space. Suppose the mapping f : X —» X
satisfies the contraction condition

d(fx,fy) < (d(fx,x) - d(fy,y))¢, for all x, y €
X, where a € [0, %).

Then f has a unique fixed point in X.

Theorem?2.5. Let f be a self- mapping defined
on a complete multiplicative metric space X,
further f satisfies the following conditions

d(x,fx) d(v.fy)
d(fx, fy) < [d(x, y)]**. [—d(x‘y).d(X,Ty)y. diy‘TX)]“z

forallx,y € X and a; + a, < 1 where ay, a,
€[0,1] Then f has unique fixed point.

Proof. Let {x,} be a sequence in X, defined as
follows:

Let xq € X, f(xg) = x1,f(x1) = x2,,f(x) = x5 41-

If x,= x,,; for some ne N then x, is a fixed
point of f.

Taking x,# x,,1 foralln € N

Consider

d(xn+11xn) = d(fxn 'fxn—l)

d(xn,fxn) d(xn—1.xn-1)

aq az

< [d( xn’ xn_l )] ’ d(xntxn—1)-d(xn'fxn—l)-d(xn—lifxn)]
d(xnxn d(xn—1%n

< [A(n, X )] [ LSt e

d(xp Xn—1)-d0p, x5)-d (X —1,%n+1)

d(xn.xn+1)
< ai —nentl/ ja
< [d(xn, xn—1)]" d(xn+1,xn—1)]

d(xn—1%n+1) d(xn-1,%n)
aq az
[d( Xn» Xn—1 )] . [ A0 41,%n-1) ]

d(xy+1, %) < [d( X, X1 )],
d(xn’ xn+1) = [d(xn—lrxn)]ha
where h = a; +a, < 1, we get
[d (-1, %1%,
SimﬂarlY> d(xn—b xn) < [d(xn—Z'xn—l)]h’
2
d(xn7 xn+1) = [d(xn—Z'xn—l)]h .
Continue like this we get,
d(x,, Xn41) < [d(x, x0)]""
For n > m, d(x'rn xm) = d(xn’ xn—l) ’ d(xn—l’ xn—Z) ’

o d(xm ’ xm+1)

d(xn ’ xn+1) =

< d(xO'xl) ptlppn—24. pm
hm
< d(xg,x1) 1=+ . This implies d(x,, x,,) —»1(n, m
— ).
Hence (x,) is a Cauchy sequence. By the
multiplicative completeness of X, there is z €

X such that x, — z (n —x).

32

Now we claim that z = fz.
d(fz, z) < d(x,+1,2). dlxp41, f2)
S d(xn+1’ Z)' d(fxn' fZ)
d(xn,fxp) d(z.fz)
< d(xp41, 2). [d(x, 2] [d(xn,zfd(;;,TZ).Z(;TXH) “
d(fz, z) < limplies that fz = z. Hence z is fixed

point of f.
Uniqueness can be easily found.

Cor.1.Putting g = 0, gives Banach-
contraction[8] in the sense of multiplicative
metric spaces.

Theorem 2.6. Let (X, d) be a complete multiplicative metric space. Suppose the
mapping

f: X — X be a self- mapping satisfies the condition

d(fx,fy)< [d(x, )] [d(x, f)]%2. [d(fx, )] [d(Fy, )] [d(fx, )],

for all x, y € X, where ay, a,, az, as, as >0and a;+ 2a,+2a3 + ag+as <1

Then f has a unique fixed point in X.

Proof. Let{x,}be a sequence in X, defined as
follows.
Let xy € X, f(xq) = x1,f(x1) =x2,f(xn) =X 41,

Consider

d(xn, Xp41) = d(Tx—1,Txy)

<

[d 01, )] [y, f2)]°2 (A Xy, %] [A (2, X)]4 [A(F X1, X0-1)]0
< [dCrn1, )] [A -1, X 1)1 2 [d (X %)) 3 [d (1, 20 )] [d (o1, 201

<

(4G 1,201 [ 1,112 [ G )12 (A1, %] [ G X141 [ (g, %] [ (1, %017
< [d @, X))t d (4, Xy )] 20T

Ay, Xns1) < [dCnr, x)]",

ai+az+az+a
where h = 227275375 < ]
1-(az+az+ay)

Simﬂaﬂ% d(xnflr xn) = [d(xn72lxn71)]h3

(X, Xp41) < [d Xz X0-)]"

Continue like this we get,
Ay, Xn41) < [d(xo, 21"

For n > m, d(xrnxm) = d(xruxnfl) : d(xnfhxnfz) o

d(xm ) xm+1)

< d(xg, xp) MR A AT

< d(xp,x,) 1% . This implies d(x,, x,,) —1(n, m — ).
Hence (x,) is a Cauchy sequence. By the
multiplicative completeness of X, there is z €
X such that x, — z (n —>x).

Now we show that z is fixed point of f .
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d(fz, z) < d(fx,,fz). d(fx,z)

< [d(z, 21 [dCx 212 [d(Fx D] [d(f2, D] [d( 201
d(fz, 2) < [d(z, fz)]°2** gives fz = z, i.e., z is a fixed point of f.
Uniqueness: Suppose
fixed point of f, then
d(z, w) = d(fz, fw)

<
[d(zw)). [d(z, fw)]“2. [d(fz,w)]*. [d(Fw, w)]*. [d(fz, 2)]°
d(z, w) < [d(z,w)]*1T?21%3 this implies that d(z,
w)=1lie.,, z=w.
Hence f has a unique fixed point .

z, W (z # w) be two

Cor.1.Putting a, = a3 = a;, = as
Banach-contraction[8].

= 0 gives

Cor.2.Putting a; = a, = a3 = 0, a4 = as gives
Kannan-contraction[§].

Cor.3.Putting a; = a4 = a5 = 0, a, = az gives
Chatterjea-contraction[8].

Cor.5.Putting a, = a5 = 0, gives Isufati
results[5] in the sense of multiplicative metric
spaces.

Cor.7.Putting a4, = a5 = 0, a, = a3 gives Reich
results[9] in the sense of multiplicative metric
spaces.

3. Application to the existence of solutions
of multiplicative integral equations

Let X = C([1,T];R*) for sufficiently small T > 1
be the set of continuous functions defined on
closed interval [1,T] and d: XxX —R% be
defined as d(x, y) =

sup

te[1T] | (t)| for x, y € X.
Then (X, d) is complete multiplicative metric
spaces.

Consider the multiplicative integral equation
x(t)=u(t).J; (K &, )f (s, xS,

(3.1)

and let F: X—X defined by

Flx)(t)=u(t). J; (K (£, ) (5, x(s))*

(3.2)

We assume that

(@) f:[1,T] — R* is continuous;

33

(b) wu:[1,T] — Rt is continuous;

(¢) K:[1,T] x Rt — R" is continuous.
(d) for every x,y € X ,
f(s, x(s))
we have |—f 76 <
|Fx (s)| |Fy ()| |Fx(s)|

(@050 apF . anbo aphel. g5,

where A; 20 ,1i=1to 5 and A+ 2A,+22; +
At As < 1.

(e) |t —ty] < K, for K > O sufficiently small K
<1,i=1to 5.

Theorem 3.1. Under the assumptions (a) to
(e), the integral equation (3.1) has a unique
solution in X.

Proof. Consider the mappings F: X-—-X
defined by (3.2). Notice that the existence of a
solution for the multiplicative integral
equation (3.1) is equivalent to the existence of
a fixed point for the map F.

By condition (d) , we have P |F(X)(t) _ sup

te[LT] |F (@)l te[LT]
SOSEE O™ wp  [FEC xE
w(©).f; (K (©)f (s.3()))9 €T TR Gre)®
= sup M = Sup M)ds < Sup
T eyem® ] ELTT sy ) te[L.T]
f(s:x(s)) |Nds
(f flsy(s) )
Sts[m (J‘1 ((7\1)|y< >|.(7\z)|7<3>|. ()\3)|%|A ()\4)‘%‘, ()‘5)‘%\) yis by (d)
<
bl s e | 5“" Eo | Sup |29 gy |91 s

S (G APOL S )l 2 (hg) o) LAl s oglely)

g(fl ((Al):eu,rﬂmbds (f (A, )te[1,r]|m|)ds
(ft((7\3)féhpf]|y(ss) |)ds (f ((M):es[n] y(s)|)ds

Fx (s)

(f (()Ls)re[l T1| x(s) |)ds

<(f, ()2 ([ () demyds,
(U} (@) E)ds ([ () »)ds,
(J; () A Fxadyds

< (J; ()@Y (ff(1yds)aa e,
(J; )@ 7 ([ ayd)an @
(J} (1)%) 0,

< (Jt =t (|t
t0)A3)d(Fxy).

d(x,Fy)
— toDO‘Z) C(t—
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(It =t @7 (It = £o[)A™ . K <l,i=1tos.

< (K) (Xl)d(x,y) ) (K)O\Z)d(x'Fy) ) (K) (;\B)d(Fx,y) .

(K) A" ()0 from (e)
S(Khl)d(x.y) (K?\z)d(x,Fy).

All conditions of the theorem 2.6 are satisfied
and hence the mapping F has a unique fixed
point in X = C([1,T],R") of the multiplicative

A3\d(Fx,y) AgaNd(Fy.y) As\d(Fx,x)
(K"3) - (K™) - (K™5) integral equation (3.1).

<

(@, y) <. ([dCx Fy)<". (dFx, )<
d(Fy, ). (d(Fx,x)" as
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