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1. Introduction and preliminaries  

It is well know that the set of positive real 

numbers ℝ+ is not complete according to the 

usual metric. To overcome this problem, in 

2008, Bashirov et al. [2] introduced the 

concept of multiplicative metric spaces as 

follows:      

                                                                                                                                                             

Definition1.1. ([2]) Let X be a non-empty set. 

A multiplicative metric is a mapping                          

d: X×X → ℝ+ satisfying the following 

conditions: 

  (i) d(x, y) ≥ 1 for all x, y ∈ X and d(x, y) = 1 if 

and only if x=y; 

  (ii) d(x, y) = d(y, x) for all x, y ∈ X; 

  (iii) d(x, y) ≤ d(x, z). d(z, y) for all x, y, z ∈ X 

(multiplicative triangle inequality). 

Then mapping d together with X i.e., (X, d) is 

a multiplicative metric space. 

 

Example1.2.([8]) Let Rn
+ be the collection of 

all n-tuples of positive real numbers.  

Let  𝑑∗: ℝn
+ × ℝn

+ → ℝ be defind as follows: 

      𝑑∗ (x, y) =   
𝑥1

𝑦1
 
∗

 .  
𝑥2

𝑦2
 
∗

 …  
𝑥𝑛

𝑦𝑛
 
∗

 , 

where  x=(𝑥1,. . . ,𝑥𝑛 ) , y=(𝑦1, . . . ,𝑦𝑛 ) ∈ ℝn
+ and 

  .   : ℝ+ → ℝ+ is defined by 

     𝑎  ∗ =   
𝑎     𝑖𝑓 𝑎 ≥ 1;
1

𝑎
      𝑖𝑓 𝑎 < 1.

  

Then it is obvious that all conditions of 

multiplicative metric are satisfied. 

 

Example1.3. ([10]) Let d: ℝ × ℝ→ [1, ∞) be 

defined as  

      d(x, y) = 𝑎 𝑥−𝑦  ,where x, y ∈ ℝ and a > 1. 

Then d(x, y) is a multiplicative metric and (X, 

d) is called a multiplicative metric space. We 

call it usual multiplicative metric spaces. 

 

Example1.4.([10]) Let (X, d) be a metric 

space .Define a  mapping da  on X by                                    

da(x, y) = 𝑎𝑑(𝑥 ,𝑦) where a > 1 is a real number 

and  da(x, y) = 𝑎𝑑(𝑥 ,𝑦) =  
1  𝑖𝑓  𝑥 = 𝑦
𝑎  𝑖𝑓  𝑥 ≠ 𝑦.

    

The metric da(x, y) is called discrete 

multiplicative metric and X together with 

metric da i.e.,                               (X, da ) is 

known as a discrete multiplicative metric 

space. 
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Example 1.5.([1]) Let 𝑋 = 𝐶∗[𝑎, 𝑏] be the 

collection of all real-valued multiplicative 

continuous functions over[𝑎, 𝑏] ⊆ 𝑅+. Then (𝑋, 

𝑑) is a multiplicative metric space with metric 

𝑑 defined by 

d(𝑓,𝑔) = sup
x∈[a,b]

 
𝑓(𝑥)

𝑔(𝑥)
  for f ,g ∈ 𝑋. 

 

Remark1.6. We note that the example 1.1 is 

valid for positive real numbers and example 

1.2 is valid for all real numbers. 

 

Remark 1.7.([10]) Neither every metric is 

multiplicative metric nor every multiplicative 

metric is metric. The mapping 𝑑∗ defined 

above is multiplicative metric but not metric 

as it doesn’t satisfy triangular inequality. 

Consider 𝑑∗(
1

3
, 

1

2
) + 𝑑∗(

1

2
, 3) = 

3

2
 + 6 = 7.5 < 9 = 

𝑑∗(
1

3
, 3).  

On the other, hand the usual metric on R is 

not multiplicative metric as it doesn’t satisfy 

multiplicative triangular inequality, since d(2, 

3) · d(3, 6) = 3 < 4 = d(2, 6). 

One can refer to ([8]) for detailed 

multiplicative metric topology. 

 

Definition1.8.([8]) Let (X, d) be a 

multiplicative metric space. A sequence {𝑥𝑛 } in 

X said to be a 

(i) multiplicative convergent sequence to x, if 

for every multiplicative open ball                      

 𝐵𝜖 (x) = { y | d(x, y) < ϵ} , ϵ > 1, there exists a 

natural number N such that  𝑥𝑛  ∈ 𝐵𝜖 (x) for all                      

n ≥ N, i. e, d(𝑥𝑛 , 𝑥) → 1 as n → ∞. 

(ii) multiplicative Cauchy sequence if for all ϵ 

> 1, there exists N ∈ ℕ such that d(𝑥𝑛 , 𝑥𝑚 ) < ϵ                                      

for all m, n > N i. e , d(𝑥𝑛 , 𝑥𝑚 ) → 1 as n → ∞. 

A multiplicative metric space is called 

complete if every multiplicative Cauchy 

sequence in X is  multiplicative converging to  

x ∈ X. 

 

Remark1.9. We note that the set of positive 

real numbers ℝ+ is not complete according to 

the usual metric. Let X = ℝ+ .Consider the 

sequence 𝑥𝑛  = { 
1

𝑛
 }. It is obvious {𝑥𝑛 } is a 

Cauchy sequence in X with respect to usual 

metric spaces X and it is not complete metric 

space as every Cauchy sequence in X does 

not converge in ℝ+ i.e., 0 ∉ ℝ+. In case of 

multiplicative metric spaces, consider the 

sequence 𝑥𝑛  = { 𝑎
1

𝑛  } ,where a >1,  it is 

complete in multiplicative metric spaces, 

since             for n ≥ m, 

𝑑∗(𝑥𝑛 , 𝑥𝑚 ) =  
𝑥𝑛

𝑥𝑚
 
∗

 =  
𝑎

1
𝑛 

𝑎
1

𝑚 
 
∗

  = 𝑎
1

𝑛
−

1

𝑚  
∗

  = 𝑎
1

𝑚
−

1

𝑛  < 𝑎
1

𝑚  

< ϵ   if m >  
𝑙𝑜𝑔𝑎

𝑙𝑜𝑔ϵ
 ,                               

where   𝑎  ∗ =   
𝑎     𝑖𝑓 𝑎 ≥ 1;
1

𝑎
      𝑖𝑓 𝑎 < 1.

  

This implies {𝑥𝑛 } is a Cauchy sequence in X 

and it converges to 1∈ ℝ+ as n → ∞. Hence (X, 

d) is a complete multiplicative metric space. 

In 2012, Özavşar and Çevikel[8] 

introduced the concepts of Banach-

contraction, Kannan-contraction, and 

Chatterjea-contraction mappings in the sense 

of multiplicative metric spaces as follows:  

 

(Banach-contraction). Let (X, d) be a 

complete multiplicative metric space and let f: 

X → X be a multiplicative contraction if there 

exists a real constant λ ∈ [0, 1) such that  

           d(f(x), f(y)) ≤ d(𝑥, 𝑦)λ for all x, y ∈ X. 

Then f has a unique fixed point. 

 

(Kannan-contraction). Let (X, d) be a 

complete multiplicative metric space. 

Suppose the mapping f : X → X satisfies the 

contraction condition 

         d(fx, fy) ≤ (d(fx, x) · d(fy, y))λ, for all x, y ∈ 

X, where λ ∈ [0, 
1

2
). 

 Then f has a unique fixed point in X and for 

any x ∈ X, iterative sequence (𝑓𝑛(𝑥)) converges 

to the fixed point. 

 

(Chatterjea-contraction). Let (X, d) be a 

complete multiplicative metric space. 

Suppose the mapping f : X → X satisfies the 

contraction condition 
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d(fx,fy) ≤ (d(fy, x) · d(fx, y))λ, for all x, y ∈ X, 

where λ ∈ [0, 
1

2
). 

Then f has a unique fixed point in X and for 

any x ∈ X, iterative sequence (𝑓𝑛(𝑥)) converges 

to the fixed point. 

 

2. Main results. 

 Now we prove some fixed point theorems for 

a map that satisfy various types of rational 

inequalities. 

 

Theorem 2.1. Let (X, d) be a complete 

multiplicative metric space. Suppose the 

mapping  

f : X → X be a continuous self- mapping 

satisfies the condition 

d(fx,fy)≤ 

[𝑑(𝑥, 𝑦)]𝑎1 . [𝑑(𝑥, 𝑓𝑦)]𝑎2 . [𝑑(𝑓𝑥, 𝑦)]𝑎3 . [𝑑(𝑓𝑦, 𝑦)]𝑎4 . [
𝑑(𝑦, 𝑓𝑦)𝑑(𝑥, 𝑓𝑥)

𝑑(𝑥, 𝑦)
]𝑎5 . [

𝑑(𝑦, 𝑓𝑥)𝑑(𝑥, 𝑓𝑥)

𝑑(𝑥, 𝑦)𝑑(𝑦, 𝑓𝑦)
]𝑎6 , 

for all x, y ∈ X, where 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6 ≥ 0 

and 𝑎1+ 2𝑎2+2𝑎3+𝑎4+𝑎5+𝑎6 < 1 

Then f has a unique fixed point in X. 

 

Proof. Let {𝑥𝑛 }be a sequence in X defined as 

follows. 

Let 𝑥0 ∈ X. For this 𝑥0 there exists 𝑥1 such 

that f(𝑥0) = 𝑥1. Again, for this 𝑥1 there exists 𝑥2 

such that f (𝑥1) = 𝑥2. Continue like this we get 

f (𝑥𝑛 ) = 𝑥𝑛+1. 

Consider 

d(𝑥𝑛 , 𝑥𝑛+1) = d(T𝑥𝑛−1,T𝑥𝑛 ) 

≤ [𝑑(𝑥𝑛−1, 𝑥𝑛)]𝑎1 . [𝑑(𝑥𝑛−1, 𝑓𝑥𝑛)]𝑎2 . [𝑑(𝑓𝑥𝑛−1, 𝑥𝑛)]𝑎3 . [𝑑(𝑓𝑥𝑛 , 𝑥𝑛)]𝑎4 . [
𝑑(𝑥𝑛 ,𝑓𝑥𝑛 )𝑑(𝑥𝑛−1 ,𝑓𝑥𝑛−1)

𝑑(𝑥𝑛−1 ,𝑥𝑛 )
]𝑎5 . [

𝑑(𝑥𝑛 ,𝑓𝑥𝑛−1)𝑑(𝑥𝑛−1 ,𝑓𝑥𝑛−1)

𝑑(𝑥𝑛−1 ,𝑥𝑛 )𝑑(𝑥𝑛 ,𝑓𝑥𝑛 )
]𝑎6 

≤ 
[𝑑(𝑥𝑛−1 , 𝑥𝑛)]𝑎1 . [𝑑(𝑥𝑛−1, 𝑥𝑛+1)]𝑎2 . [𝑑(𝑥𝑛 , 𝑥𝑛)]𝑎3 . [𝑑(𝑥𝑛+1 , 𝑥𝑛)]𝑎4 . [𝑑(𝑥𝑛+1 , 𝑥𝑛)]𝑎5 . [𝑑(𝑥𝑛−1, 𝑥𝑛)]𝑎6 

≤ 
6.  𝑑 𝑥𝑛 , 𝑥𝑛+1  𝑎3 . [𝑑(𝑥𝑛+1 , 𝑥𝑛 )]𝑎4 . [𝑑(𝑥𝑛+1 , 𝑥𝑛 )]𝑎5 . [𝑑(𝑥𝑛−1 , 𝑥𝑛 )]𝑎6 

≤ [𝑑(𝑥𝑛−1, 𝑥𝑛 )]𝑎1+𝑎2+𝑎3+𝑎6 . [𝑑(𝑥𝑛+1, 𝑥𝑛 )]𝑎2+𝑎3+𝑎4+𝑎5  

d(𝑥𝑛 , 𝑥𝑛+1) ≤ [𝑑(𝑥𝑛−1, 𝑥𝑛 )] , 

where h = 
𝑎1+𝑎2+𝑎3+𝑎6

1−(𝑎2+𝑎3+𝑎4+𝑎5)
 < 1. 

Similarly, d(𝑥𝑛−1, 𝑥𝑛 ) ≤ [𝑑(𝑥𝑛−2, 𝑥𝑛−1)] , 

d(𝑥𝑛 , 𝑥𝑛+1) ≤ [𝑑(𝑥𝑛−2, 𝑥𝑛−1)]2
. 

Continue like this we get,  

d(𝑥𝑛 , 𝑥𝑛+1) ≤ [𝑑(𝑥0 , 𝑥1)]𝑛
 

For n > m, d(𝑥𝑛 , 𝑥𝑚 ) ≤ d(𝑥𝑛 , 𝑥𝑛−1) · d(𝑥𝑛−1, 𝑥𝑛−2) · 

· · d(𝑥𝑚 , 𝑥𝑚+1) 

    ≤ d(𝑥0 , 𝑥1) 
𝑛−1+𝑛−2+⋯𝑚

 

≤ d(𝑥0 , 𝑥1) 
𝑚

1−  . This implies d(𝑥𝑛 , 𝑥𝑚 ) →1 as n, 

m → ∞. 

Hence (𝑥𝑛 ) is a Cauchy sequence. By the 

multiplicative completeness of X, there is z ∈ 

X such that 𝑥𝑛  → z as n →∞. 

Now we show that z is fixed point of f by 

assuming f is continuous or not continuous. 

(i)  f is continuous, since 𝑥𝑛  → z (n →∞) and f 

is continuous so, lim𝑛→∞ 𝑓 𝑥𝑛= fz =           

lim𝑛→∞ 𝑥𝑛+1= z, i.e., z is a fixed point of f. 

(ii)  f is not continuous then 

      d(fz, z) ≤ d(f𝑥𝑛 ,fz). d(f𝑥𝑛z) 

 ≤ 

[𝑑(𝑧, 𝑥𝑛)]𝑎1 . [𝑑(𝑥𝑛 , 𝑓𝑧)]𝑎2 . [𝑑(𝑓𝑥𝑛 , 𝑧)]𝑎3 . [𝑑(𝑓𝑧, 𝑧)]𝑎4 . [
𝑑(𝑧 ,𝑓𝑧 )𝑑(𝑥𝑛 ,𝑓𝑥𝑛 )

𝑑(𝑧 ,𝑥𝑛 )
]𝑎5 . [

𝑑(𝑧 ,𝑓𝑥𝑛 )𝑑(𝑥𝑛 ,𝑓𝑥𝑛 )

𝑑(𝑧 ,𝑥𝑛 )𝑑(𝑧 ,𝑓𝑧 )
]𝑎6. 

d(fz, z) ≤ [𝑑(𝑧, 𝑓𝑧)]𝑎2+𝑎4+𝑎5−𝑎6  gives fz = z, i.e., z 

is a fixed point of f. 

 

Uniqueness: Suppose  z, w (z ≠ w) be two 

fixed point of f, then  

d(z, w) = d(fz, fw) 

 ≤ [𝑑(𝑧, 𝑤)]𝑎1 . [𝑑(𝑧, 𝑓𝑤)]𝑎2 . [𝑑(𝑓𝑧, 𝑤)]𝑎3 . [𝑑(𝑓𝑤, 𝑤)]𝑎4 . [
𝑑(𝑤 ,𝑓𝑤 )𝑑(𝑧 ,𝑓𝑧 )

𝑑(𝑧 ,𝑤)
]𝑎5 .  

𝑑 𝑤 ,𝑓𝑧 𝑑 𝑧 ,𝑓𝑧 

𝑑 𝑧 ,𝑤 𝑑 𝑤 ,𝑓𝑤  
 .𝑎6 

d(z, w) ≤ [𝑑(𝑧, 𝑤)]𝑎1+𝑎2+𝑎3  this implies that d(z, 

w) = 1 i.e., z = w. 

Hence f has a unique fixed point . 

Cor.1.Putting 𝑎2 = 𝑎3 = 𝑎4 = 𝑎5 = 𝑎6 = 0 gives 

Banach-contraction[8] in the sense of 

multiplicative metric spaces. 

Let (X, d) be a complete multiplicative metric 

space and let f: X → X be a multiplicative 

contraction if there exists a real constant 𝑎1 ∈ 

[0, 1) such that  

           d(f(x), f(y)) ≤ d(𝑥, 𝑦)𝑎1  for all x, y ∈ X. 

Then f has a unique fixed point. 

 

Cor.2.Putting 𝑎2 = 𝑎3 = 𝑎4 =  𝑎6 = 0,  𝑎1 = 𝑎5 

gives Kannan-contraction[8] in the sense of 

multiplicative metric spaces.  

Let (X, d) be a complete multiplicative metric 

space. Suppose the mapping f : X → X 

satisfies the contraction condition 

 d(fx,fy) ≤ (d(fx, x) · d(fy, y))𝑎1 , for all x, y ∈ X, 

where 𝑎1 ∈ [0, 
1

2
). 

 Then f has a unique fixed point in X and for 

any x ∈ X, iterative sequence (𝑓𝑛(𝑥)) converges 

to the fixed point. 
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Cor.3.Putting 𝑎1 = 𝑎4 = 𝑎5 =  𝑎6 = 0,  𝑎2 = 𝑎3 

gives Chatterjea-contraction[8] in the sense of 

multiplicative metric spaces. 

Let (X, d) be a complete multiplicative metric 

space. Suppose the mapping f : X → X 

satisfies the contraction condition 

          d(fx,fy) ≤ (d(fy, x) · d(fx, y))𝑎2 , for all x, y ∈ 

X, where 𝑎2 ∈ [0, 
1

2
). 

Then f has a unique fixed point in X and for 

any x ∈ X, iterative sequence (𝑓𝑛(𝑥)) converges 

to the fixed point.  

 

Cor.4.Putting 𝑎2 = 𝑎3 =  𝑎6 = 0, gives Kholi 

results[7] in the sense of multiplicative metric 

spaces as follows:  

Let (X, d) be a complete multiplicative metric 

space. Suppose the mapping f : X → X be a 

continuous self- mapping satisfies the 

condition 

 d(fx, fy)≤ 

[𝑑(𝑥, 𝑦)]𝑎1 . [𝑑(𝑓𝑦, 𝑦)]𝑎4 . [
𝑑(𝑦 ,𝑓𝑦 )𝑑(𝑥 ,𝑓𝑥 )

𝑑(𝑥 ,𝑦)
]𝑎5 , for all x, y 

∈ X, where 𝑎1, 𝑎4, 𝑎5   ≥ 0 and 

 𝑎1+ 𝑎4+𝑎5 < 1. Then f has a unique fixed 

point in X. 

 

Cor.5.Putting 𝑎4 = 𝑎5 =  𝑎6 = 0, gives Isufati 

results [5] in the sense of multiplicative 

metric spaces as follows:  

Let (X, d) be a complete multiplicative metric 

space. Suppose the mapping f : X → X be a 

continuous self- mapping satisfies the 

condition 

                     d(fx,fy)≤ 

[𝑑(𝑥, 𝑦)]𝑎1 . [𝑑(𝑥, 𝑓𝑦)]𝑎2 . [𝑑(𝑓𝑥, 𝑦)]𝑎3 ,  

for all x, y ∈ X, where 𝑎1, 𝑎2, 𝑎3 ≥ 0 and 𝑎1+ 

2𝑎2+2𝑎3 < 1. 

Then f has a unique fixed point in X. 

 

Cor.6.Putting 𝑎2 = 𝑎3 =  𝑎4 = 𝑎6 = 0, gives 

Jaggi results[6] in the sense of multiplicative 

metric spaces as follows:  

Let (X, d) be a complete multiplicative metric 

space. Suppose the mapping f : X → X be a 

continuous self- mapping satisfies the 

condition 

 d(fx,fy)≤ [𝑑(𝑥, 𝑦)]𝑎1 . [
𝑑(𝑦 ,𝑓𝑦 )𝑑(𝑥 ,𝑓𝑥 )

𝑑(𝑥 ,𝑦)
]𝑎5 , for all x, y ∈ 

X, where 𝑎1, 𝑎5  ≥ 0 and 𝑎1+𝑎5  < 1 

Then f has a unique fixed point in X.  

 

Cor.7.Putting 𝑎4 = 𝑎5 =  𝑎6 = 0, 𝑎2 = 𝑎3 gives 

Reich results [9] in the sense of multiplicative 

metric spaces as follows: 

 Let (X, d) be a complete multiplicative metric 

space. Suppose the mapping f : X → X be a 

continuous self- mapping satisfies the 

condition 

      d(fx,fy)≤ [𝑑(𝑥, 𝑦)]𝑎1 . [𝑑 𝑥, 𝑓𝑦 . 𝑑(𝑓𝑥, 𝑦)]𝑎2 , for 

all x, y ∈ X, where 𝑎1, 𝑎2 ≥ 0 and 

 𝑎1+ 4𝑎2 < 1.Then f has a unique fixed point in 

X. 

 

Theorem 2.2. Let (X, d) be a complete 

multiplicative metric space. Suppose the 

mapping  

f : X → X be a continuous self- mapping 

satisfies the condition 

 d(fx, fy) ≤ [𝑑(𝑥, 𝑦)]𝑎1 . [
𝑑(𝑦 ,𝑓𝑥 )𝑑(𝑥 ,𝑓𝑦 )

𝑑(𝑥 ,𝑦)
]𝑎2 ,  

for all x, y ∈ X, where 𝑎1, 𝑎2   ≥ 0 and 𝑎1+ 𝑎2 < 

1 

Then f has a unique fixed point in X. 

 

Proof. Let {𝑥𝑛 }be a sequence in X, defined as 

follows: 

Let 𝑥0 ∈ X, f (𝑥0) =  𝑥1, f(𝑥1) = 𝑥2,···,f(𝑥𝑛 ) = 𝑥𝑛+1. 

Consider 

d(𝑥𝑛 , 𝑥𝑛+1) = d(T𝑥𝑛−1,T𝑥𝑛 ) 

                   ≤ 

[𝑑(𝑥𝑛−1, 𝑥𝑛 )]𝑎1 . [
𝑑(𝑥𝑛 ,𝑓𝑥𝑛−1)𝑑(𝑥𝑛−1 ,𝑓𝑥𝑛 )

𝑑(𝑥𝑛−1 ,𝑥𝑛 )
]𝑎2  

                   ≤ [𝑑(𝑥𝑛−1 , 𝑥𝑛)]𝑎1 . [
𝑑(𝑥𝑛−1 ,𝑥𝑛 +1)

𝑑(𝑥𝑛−1 ,𝑥𝑛 )
]𝑎2  

                   ≤ 

[𝑑(𝑥𝑛−1, 𝑥𝑛 )]𝑎1−𝑎2 . [𝑑 𝑥𝑛−1, 𝑥𝑛 . 𝑑(𝑥𝑛+1, 𝑥𝑛 )]𝑎2  

                    ≤ [𝑑(𝑥𝑛−1, 𝑥𝑛 )]𝑎1+𝑎2+𝑎3+𝑎6 . 

[𝑑(𝑥𝑛+1, 𝑥𝑛 )]𝑎2+𝑎3+𝑎4+𝑎5  

d(𝑥𝑛 , 𝑥𝑛+1) ≤ [𝑑(𝑥𝑛−1, 𝑥𝑛 )] , 

where h = 
𝑎1

1−𝑎2
 < 1. 

Similarly, d (𝑥𝑛−1, 𝑥𝑛 ) ≤ [𝑑(𝑥𝑛−2 , 𝑥𝑛−1)] , 
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                d (𝑥𝑛 , 𝑥𝑛+1) ≤ [𝑑(𝑥𝑛−2, 𝑥𝑛−1)]2
. 

Continue like this we get,  

d(𝑥𝑛 , 𝑥𝑛+1) ≤ [𝑑(𝑥0 , 𝑥1)]𝑛
 

For n > m, d(𝑥𝑛 , 𝑥𝑚 ) ≤ d(𝑥𝑛 , 𝑥𝑛−1) · d(𝑥𝑛−1, 𝑥𝑛−2) · 

· · d(𝑥𝑚 , 𝑥𝑚+1) 

 ≤ d(𝑥0 , 𝑥1) 
𝑛−1+𝑛 −2+⋯𝑚

 

  ≤ d(𝑥0, 𝑥1) 
𝑚

1−  . This implies d(𝑥𝑛 , 𝑥𝑚 ) →1 as n, 

m → ∞. 

Hence (𝑥𝑛 ) is a Cauchy sequence. By the 

multiplicative completeness of X, there is z ∈ 

X such that 𝑥𝑛  → z (n →∞). 

Now we show that z is fixed point of f. 

Since f is continuous and 𝑥𝑛  → z (n →∞) so, 

lim𝑛→∞ 𝑓 𝑥𝑛= fz = lim𝑛→∞ 𝑥𝑛+1= z,  

i.e., z is a fixed point of f. 

 

Uniqueness: Suppose  z, w (z ≠ w) be two 

fixed point of f, then  

d(z, w) = d(fz, fw) 

                  ≤ [𝑑(𝑧, 𝑤)]𝑎1 . [
𝑑(𝑤 ,𝑧)𝑑(𝑧 ,𝑤)

𝑑(𝑧 ,𝑤)
]𝑎2  

d(z, w) ≤ [𝑑(𝑧, 𝑤)]𝑎1+𝑎2  this implies that d(z, w) 

= 1 i.e., z = w. 

Hence f has a unique fixed point . 

 

Cor.1.Putting 𝑎2  = 0, gives Banach-

contraction[8] results in the sense of 

multiplicative metric spaces as follows: 

Let (X, d) be a complete multiplicative metric 

space and let f: X → X be a multiplicative 

contraction if there exists a real constant 𝑎1 ∈ 

[0, 1) such that  

           d(f(x), f(y)) ≤ d(𝑥, 𝑦)𝑎1  for all x, y ∈ X. 

Then f has a unique fixed point. 

 

Cor.2.Putting 𝑑 𝑥, 𝑦 = 1, gives Chatterjea-

contraction[8] results in the sense of 

multiplicative metric spaces as follows: 

Let (X, d) be a complete multiplicative metric 

space. Suppose the mapping f : X → X 

satisfies the contraction condition 

          d(fx,fy) ≤ (d(fy, x) · d(fx, y))𝑎2 , for all x, y ∈ 

X, where 𝑎2 ∈ [0, 
1

2
). 

Then f has a unique fixed point in X and for 

any x ∈ X, iterative sequence (𝑓𝑛(𝑥)) converges 

to the fixed point.  

 

Theorem 2.3. Let f be a continuous self- 

mapping defined on a complete multiplicative 

metric space X, further f satisfies the 

following conditions  

d(fx, fy) ≤ [d(x, fx) . d(y, fy)] 𝑎1 . [d x, fy . d(y, fx)] 𝑎2 . 

[d( x, y )]𝑎3 .  [
d(x,fx ) d(y,Ty )

d(x,y)
]𝑎4 . 

                              

{ max {d(x, fx) , d(y, fy) , d(x, fy) , d(y, fx) ,
d(x,fx ).d(y,fy ).d (y,fx ).

d(x,y)
}}𝑎5 

for all x, y ∈ X  and  2𝑎1 + 2𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 < 

1 where  𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5 ∈[0,1].  

Then T has unique fixed point. 

 

Proof. Let {𝑥𝑛 } be a sequence in X, defined as 

follows: 

Let 𝑥0 ∈ X, f(𝑥0) = 𝑥1,f(𝑥1) = 𝑥2,···,f(𝑥𝑛 ) = 𝑥𝑛+1. 

If  𝑥𝑛= 𝑥𝑛+1 for some n∈ Ν then 𝑥𝑛  is a fixed 

point of f. 

Taking 𝑥𝑛≠ 𝑥𝑛+1 for all n ∈ Ν 

Consider 

d( 𝑥𝑛+1, 𝑥𝑛 ) = d(T𝑥𝑛 ,T𝑥𝑛−1) 

   

≤[d(𝑥𝑛 , f𝑥𝑛 ) . d(𝑥𝑛−1, f𝑥𝑛−1)] 𝑎1 .

 [d 𝑥𝑛 , f𝑥𝑛−1 . d(𝑥𝑛−1, f𝑥𝑛 )] 𝑎2 .[d( 𝑥𝑛 , 𝑥𝑛−1 )]𝑎3 . 

[
d(𝑥𝑛 ,f𝑥𝑛 ) d(𝑥𝑛−1 ,T𝑥𝑛−1)

d(𝑥𝑛 ,𝑥𝑛−1)
]𝑎4 . 

{ max {d(𝑥𝑛 , f𝑥𝑛) , d(𝑥𝑛−1 , f𝑥𝑛−1) , d(𝑥𝑛 , f𝑥𝑛−1) , d(𝑥𝑛−1, f𝑥𝑛) ,
d(𝑥𝑛 ,f𝑥𝑛 ).d(𝑥𝑛−1,f𝑥𝑛−1).d (𝑥𝑛−1 ,f𝑥𝑛 ).

d(𝑥𝑛 ,𝑥𝑛−1)
}}𝑎5 

  

≤[d(𝑥𝑛 , 𝑥𝑛+1) . d(𝑥𝑛−1, 𝑥𝑛 )] 𝑎1 .

 [d 𝑥𝑛 , 𝑥𝑛 . d(𝑥𝑛−1 , 𝑥𝑛 )] 𝑎2 .[d( 𝑥𝑛 ,

  𝑥𝑛−1 )]𝑎3.[d(𝑥𝑛,𝑥𝑛+1) d(𝑥𝑛−1,𝑥𝑛)d(𝑥𝑛,𝑥𝑛−1)]𝑎4.              
{ max {d(𝑥𝑛 ,𝑥𝑛+1) , d(𝑥𝑛−1, 𝑥𝑛) , d(𝑥𝑛 , 𝑥𝑛) , d(𝑥𝑛−1, 𝑥𝑛+1) ,

d(𝑥𝑛 ,𝑥𝑛 +1).d(𝑥𝑛−1,𝑥𝑛 ).d (𝑥𝑛−1,𝑥𝑛+1).

d(𝑥𝑛 ,𝑥𝑛−1)
}}𝑎5 

     

≤[d(𝑥𝑛 , 𝑥𝑛+1) . d(𝑥𝑛−1, 𝑥𝑛 )] 𝑎1 .

 [d 𝑥𝑛+1, 𝑥𝑛 . d(𝑥𝑛−1 , 𝑥𝑛 )] 𝑎2 .[d( 𝑥𝑛 , 𝑥𝑛−1 )]𝑎3.                                                                         

[d(𝑥𝑛 , 𝑥𝑛+1)]𝑎4 .[d(𝑥𝑛 , 𝑥𝑛+1)2. d(𝑥𝑛−1, 𝑥𝑛 )]𝑎5 

d( 𝑥𝑛+1, 𝑥𝑛 ) ≤ 

[d(𝑥𝑛 , 𝑥𝑛+1)]𝑎1+𝑎4+𝑎2+2𝑎5 . [d(𝑥𝑛 , 𝑥𝑛−1)]𝑎1+𝑎2+𝑎5+𝑎3 , 

d(𝑥𝑛 , 𝑥𝑛+1) ≤ [𝑑(𝑥𝑛−1, 𝑥𝑛 )] , 

where h = 
𝑎1+𝑎2+𝑎5+𝑎3

1−(𝑎1+𝑎4+𝑎2+2𝑎5)
 < 1. 

Similarly, d(𝑥𝑛−1, 𝑥𝑛 ) ≤ [𝑑(𝑥𝑛−2, 𝑥𝑛−1)] , 

d(𝑥𝑛 , 𝑥𝑛+1) ≤ [𝑑(𝑥𝑛−2, 𝑥𝑛−1)]2
. 
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Continue like this we get,  

d(𝑥𝑛 , 𝑥𝑛+1) ≤ [𝑑(𝑥0 , 𝑥1)]𝑛
 

For n > m, d(𝑥𝑛 , 𝑥𝑚 ) ≤ d(𝑥𝑛 , 𝑥𝑛−1) · d(𝑥𝑛−1, 𝑥𝑛−2) · 

· · d(𝑥𝑚 , 𝑥𝑚+1) 

≤ d(𝑥0 , 𝑥1) 
𝑛−1+𝑛−2+⋯𝑚

 

≤ d(𝑥0 , 𝑥1) 
𝑚

1−  . This implies d(𝑥𝑛 , 𝑥𝑚 ) →1(n, m 

→ ∞). 

Hence (𝑥𝑛 ) is a Cauchy sequence. By the 

multiplicative completeness of X, there is z ∈ 

X such that 𝑥𝑛  → z (n →∞). 

Now we show that z is fixed point of f. 

Since f is continuous and 𝑥𝑛  → z (n →∞) so, 

lim𝑛→∞ 𝑓 𝑥𝑛= fz = lim𝑛→∞ 𝑥𝑛+1= z,  

i.e., z is a fixed point of f. 

 

Uniqueness: Suppose  z, w (z ≠ w) be two 

fixed point of f, then  

d(v, w) = d(fv, fw) 

≤ [d(v, fv) . d(w, fw)] 𝑎1. [d v, fw . d(w, fv)] 𝑎2. 

[d(v, w )]𝑎3 .  [
d(v,fv ) d(w,Tw )

d(v,w)
]𝑎4. 

                          
{ max {d(v, fv) , d(w, fw) , d(v, fw) , d(w, fv) ,

d(v,fv ).d(w,fw ).d (w,fv ).

d(v,w)
}}𝑎5 

d(v, w) ≤ [𝑑(𝑣, 𝑤)]𝑎3+2𝑎2+𝑎5−𝑎4  this implies that 

d(v, w) = 1 i.e., v = w. 

Hence f has a unique fixed point . 

Cor.1.Putting 𝑎2 = 𝑎3 = 𝑎4 = 𝑎5 =  0 gives 

Kannan-contraction[8] in the sense of 

multiplicative metric spaces. 

Let (X, d) be a complete multiplicative metric 

space. Suppose the mapping f : X → X 

satisfies the contraction condition 

    d(fx,fy) ≤ (d(fx, x) · d(fy, y))𝑎1 , for all x, y ∈ X, 

where 𝑎1 ∈ [0, 
1

2
). 

Then f has a unique fixed point in X. 

 

Cor.2.Putting 𝑎2 =  𝑎4 =  𝑎5 = 0, gives Fisher-

contraction [4] in the sense of multiplicative 

metric spaces as follows: 

Let f be a continuous self- mapping defined 

on a complete multiplicative metric space X, 

further f satisfies the following conditions  

d(fx, fy) ≤ [d(x, fx) . d(y, fy)] 𝑎1 . [d( x, y )]𝑎3 ,for all 

x, y ∈ X  and  2𝑎1 + 𝑎3 < 1, where  

 𝑎1, 𝑎3 ∈[0,1] . 

Then T has unique fixed point. 

 

Cor.3.Putting 𝑎2 = 𝑎3 = 𝑎4 =  𝑎5 = 0, gives 

Chatterjea-contraction[8] in the sense of 

multiplicative metric spaces. 

Let (X, d) be a complete multiplicative metric 

space. Suppose the mapping f : X → X 

satisfies the contraction condition 

        d(fx,fy) ≤ (d(fy, x) · d(fx, y))𝑎1 , for all x, y ∈ 

X, where 𝑎1 ∈ [0, 
1

2
). 

Then f has a unique fixed point in X. 

 

Cor.4.Putting 𝑎1 =  𝑎2 =  𝑎4 = 𝑎5 = 0, gives 

Banach-contraction[8] in the sense of 

multiplicative metric spaces as follows: 

Let (X, d) be a complete multiplicative metric 

space and let f: X → X be a multiplicative 

contraction if there exists a real constant 𝑎3 ∈ 

[0, 1) such that  

           d(f(x), f(y)) ≤ d(𝑥, 𝑦)𝑎3  for all x, y ∈ X. 

Then f has a unique fixed point. 

 

Cor.5.Putting  𝑎4 =  𝑎5 = 0, gives Ciric-

contraction[3] in the sense of multiplicative 

metric spaces as follows: 

Let f be a continuous self- mapping defined 

on a complete multiplicative metric space X, 

further f satisfies the following conditions  

d(fx, fy) ≤ [d(x, fx) . d(y, fy)] 𝑎1 . [d x, fy . d(y, fx)] 𝑎2 . 

[d( x, y )]𝑎3 , 

for all x, y ∈ X  and  2𝑎1 + 2𝑎2 + 𝑎3 < 1 where  

𝑎1, 𝑎2, 𝑎3 ∈[0,1] . 

Then T has unique fixed point. 

 

Cor.6.Putting 𝑎1 =  𝑎4 =  𝑎5 = 0, gives Reich-

contraction[9] in the sense of multiplicative 

metric spaces as follows: 

Let f be a continuous self- mapping defined 

on a complete multiplicative metric space X, 

further f satisfies the following conditions  

d(fx, fy) ≤ [d x, fy . d(y, fx)] 𝑎2 . [d( x, y )]𝑎3 , for all 

x, y ∈ X  and  2𝑎2 + 𝑎3  < 1 where 

  𝑎2, 𝑎3∈[0,1]. Then T has unique fixed point. 

 

Cor.7. Putting 𝑎1 =  𝑎2 =  𝑎5 = 0gives jaggi-

contraction[6] in the sense of multiplicative 

metric spaces as follows: 



ISSN:2395-1079                         Available online at http://www.gjms.co.in/index.php/sajms 

South Asia Journal of Multidisciplinary Studies SAJMS    July 2017, Vol. 3, No 6 
 

 
UGC 49956-924 
 
 

31 
 

Let f be a continuous self- mapping defined 

on a complete multiplicative metric space X, 

further f satisfies the following conditions  

d(fx, fy) ≤  [d( x, y )]𝑎3 .  [
d(x,fx ) d(y,Ty )

d(x,y)
]𝑎4 , 

for all x, y ∈ X  and  𝑎3 + 𝑎4 < 1 where 𝑎3, 𝑎4 

∈[0,1] . 

Then T has unique fixed point. 

 

Theorem2.4. Let (X, d) be a complete 

multiplicative metric space .Let T: X → X be 

almost multiplicative contraction i.e.,  

d(fx, fy) ≤  {
[d x,fx d y,Ty  ]

d(x,y)
}α . {d( x, y )}β . 

{min {d(x, fy) , d(y, fx)}}L .        

{min {d(x, fx) , d(y, fy) }}j , for all x, y ∈ X where 

L, j ≥  0 and  α , β , γ ∈ [0,1] with  

α + β + j < 1.Then T has a unique fixed point 

in X. 

 

Proof. Let {𝑥𝑛 } be a sequence in X, defined as 

follows: 

Let 𝑥0 ∈ X, f(𝑥0) = 𝑥1,f(𝑥1) = 𝑥2,···,f(𝑥𝑛 ) = 𝑥𝑛+1. 

If  𝑥𝑛= 𝑥𝑛+1 for some n∈ Ν then 𝑥𝑛  is a fixed 

point of f. 

Taking 𝑥𝑛≠ 𝑥𝑛+1 for all n ∈ Ν 

Consider 

d( 𝑥𝑛 , 𝑥𝑛+1,) = d(T𝑥𝑛−1, T𝑥𝑛 ) 

   ≤  {
[d 𝑥𝑛−1 ,   f𝑥𝑛−1 d 𝑥𝑛 ,T𝑥𝑛  ]

d(𝑥𝑛−1 ,𝑥𝑛 )
}α . {d( 𝑥𝑛−1, 𝑥𝑛  )}β . 

{min {d(𝑥𝑛−1, f𝑥𝑛 ) , d(𝑥𝑛 , f𝑥𝑛−1)}}L . 

{min {d(𝑥𝑛−1, f𝑥𝑛−1) , d(𝑥𝑛 , f𝑥𝑛 ) }}j  

 ≤  {
[d 𝑥𝑛−1 , 𝑥𝑛  d 𝑥𝑛 , 𝑥𝑛+1 ]

d(𝑥𝑛−1 , 𝑥𝑛 )
}α . {d( 𝑥𝑛−1 , 𝑥𝑛  )}β . 

{min {d(𝑥𝑛−1, 𝑥𝑛+1) , d(𝑥𝑛 , 𝑥𝑛 )}}L . 

{min {d(𝑥𝑛−1, 𝑥𝑛 ) , d(𝑥𝑛 , 𝑥𝑛+1) }}j  

d( 𝑥𝑛 , 𝑥𝑛+1,)  ≤ {d( 𝑥𝑛+1 , 𝑥𝑛  )}α. {d( 𝑥𝑛−1 , 𝑥𝑛  )}β. 

{{min {d(𝑥𝑛−1, 𝑥𝑛 ) , d(𝑥𝑛 , 𝑥𝑛+1) }}j . 

Case I. When {min {d(𝑥𝑛−1 , 𝑥𝑛 ) , d(𝑥𝑛 , 𝑥𝑛+1) } = 

d(𝑥𝑛−1, 𝑥𝑛 ) then 

 {d( 𝑥𝑛 , 𝑥𝑛+1, )}1−α ≤ {d( 𝑥𝑛 , 𝑥𝑛−1, )}β+j, 

d(𝑥𝑛 , 𝑥𝑛+1) ≤ [𝑑(𝑥𝑛−1, 𝑥𝑛 )] ,                                                                                              

(2.1) 

where h = 
β+j

1−α
 < 1. 

Case II. When {min {d(𝑥𝑛−1, 𝑥𝑛 ) , d(𝑥𝑛 , 𝑥𝑛+1) } = 

d(𝑥𝑛+1, 𝑥𝑛 ) then 

 {d( 𝑥𝑛 , 𝑥𝑛+1, )}1−α ≤ {d( 𝑥𝑛 , 𝑥𝑛−1, )}β. {d( 𝑥𝑛 , 𝑥𝑛+1, )}𝑗  

d(𝑥𝑛 , 𝑥𝑛+1) ≤ [𝑑(𝑥𝑛−1, 𝑥𝑛 )] ,                                                                                              

(2.2) 

where h = 
β

1−α−j
 < 1, from (2.1) and (2.2) we get 

,d(𝑥𝑛 , 𝑥𝑛+1) ≤ [𝑑(𝑥𝑛−1 , 𝑥𝑛 )] . 

Similarly, d(𝑥𝑛−1, 𝑥𝑛 ) ≤ [𝑑(𝑥𝑛−2, 𝑥𝑛−1)] , 

d(𝑥𝑛 , 𝑥𝑛+1) ≤ [𝑑(𝑥𝑛−2, 𝑥𝑛−1)]2
. 

Continue like this we get,  

d(𝑥𝑛 , 𝑥𝑛+1) ≤ [𝑑(𝑥0 , 𝑥1)]𝑛
 

For n > m, d(𝑥𝑛 , 𝑥𝑚 ) ≤ d(𝑥𝑛 , 𝑥𝑛−1) · d(𝑥𝑛−1, 𝑥𝑛−2) · 

· · d(𝑥𝑚 , 𝑥𝑚+1) 

                                  ≤ d(𝑥0 , 𝑥1) 
𝑛−1+𝑛−2+⋯𝑚

 

                                   ≤ d(𝑥0 , 𝑥1) 
𝑚

1−  . This 

implies d(𝑥𝑛 , 𝑥𝑚 ) →1(n, m → ∞). 

Hence (𝑥𝑛 ) is a Cauchy sequence. By the 

multiplicative completeness of X, there is z ∈ 

X such that 𝑥𝑛  → z (n →∞). 

Now we claim that u = Tu. 

d(Tu, u) ≤ d(𝑥𝑛+1,u). d(𝑥𝑛+1, Tu) 

             ≤ d(𝑥𝑛+1,u). d(𝑇𝑥𝑛 , Tu) 

             ≤ d(𝑥𝑛+1,u). {
[d 𝑥𝑛 ,f𝑥𝑛  d u,Tu ]

d(𝑥𝑛 ,u)
}α . 

{d( 𝑥𝑛 , u )}β . {min {d(𝑥𝑛 , fu) , d(u, f𝑥𝑛 )}}L .                       

{min {d(𝑥𝑛 , f𝑥𝑛 ) , d(u, fu) }}j  

≤ d(𝑥𝑛+1,u). {
[d 𝑥𝑛 ,𝑥𝑛 +1 ]

d(𝑥𝑛 ,u)
}α . {d( 𝑥𝑛 , u )}β . 

{min {d(𝑥𝑛 , u) , d(u, 𝑥𝑛+1)}}L .                       

{min {d(𝑥𝑛 , 𝑥𝑛+1) , d(u, u) }}j  

d(Tu, u) ≤ 1,implies that d(Tu, u) = 1,Tu = u. 

Hence u is fixed point of T. 

Uniqueness can easily follow. 

 

Cor.1. If L = j = 0 then we get jaggi 

contraction[6]in sense of multiplicative as 

follows: 

Let (X, d) be a complete multiplicative metric 

space .Let T: X → X be multiplicative 

contraction, i.e.,  

d(fx, fy) ≤  {
[d x,fx d y,Ty  ]

d(x,y)
}α . {d( x, y )}β , for all x, 

y ∈ X where α , β ∈ [0,1] with  

α + β < 1,then T has a unique fixed point in 

X. 

 

Cor.2. If d(x, y) =1 and L = j = 0 then we get 

Kannan contraction[8] as follows: 
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Let (X, d) be a complete multiplicative metric 

space. Suppose the mapping f : X → X 

satisfies the contraction condition 

        d(fx,fy) ≤ (d(fx, x) · d(fy, y))α, for all x, y ∈ 

X, where α ∈ [0, 
1

2
). 

Then f has a unique fixed point in X. 

 

Theorem2.5. Let f be a self- mapping defined 

on a complete multiplicative metric space X, 

further f satisfies the following conditions  

d(fx, fy) ≤ [d( x, y )]𝑎1 .  [
d(x,fx ) d(y,fy )

d x,y .d x,Ty  .d(y,Tx )
]𝑎2 

for all x, y ∈ X  and  𝑎1 + 𝑎2  < 1 where  𝑎1, 𝑎2 

∈[0,1] Then f has unique fixed point. 

 

Proof. Let {𝑥𝑛 } be a sequence in X, defined as 

follows: 

Let 𝑥0 ∈ X, f(𝑥0) = 𝑥1,f(𝑥1) = 𝑥2,···,f(𝑥𝑛 ) = 𝑥𝑛+1. 

If  𝑥𝑛= 𝑥𝑛+1 for some n∈ Ν then 𝑥𝑛  is a fixed 

point of f. 

Taking 𝑥𝑛≠ 𝑥𝑛+1 for all n ∈ Ν 

Consider 

d(𝑥𝑛+1, 𝑥𝑛 ) = d(f𝑥𝑛  , f𝑥𝑛−1) 

≤ [d( 𝑥𝑛 , 𝑥𝑛−1 )]𝑎1.  [
d(𝑥𝑛 ,f𝑥𝑛 ) d(𝑥𝑛−1 ,f𝑥𝑛−1)

d 𝑥𝑛 ,𝑥𝑛−1 .d 𝑥𝑛 ,f𝑥𝑛−1 .d(𝑥𝑛−1 ,f𝑥𝑛 )
]𝑎2  

≤ [d( 𝑥𝑛 , 𝑥𝑛−1 )]𝑎1.  [
d(𝑥𝑛 ,𝑥𝑛 +1) d(𝑥𝑛−1 ,𝑥𝑛 )

d 𝑥𝑛 ,𝑥𝑛−1 .d 𝑥𝑛 , 𝑥𝑛  .d(𝑥𝑛−1 ,𝑥𝑛 +1)
]𝑎2  

≤ [d( 𝑥𝑛 , 𝑥𝑛−1 )]𝑎1.  [
d(𝑥𝑛 ,𝑥𝑛 +1) 

d 𝑥𝑛 +1 ,𝑥𝑛−1 
]𝑎2  

 [d( 𝑥𝑛 , 𝑥𝑛−1  )]𝑎1 .  [
d(𝑥𝑛−1 ,𝑥𝑛 +1) d(𝑥𝑛−1 ,𝑥𝑛 )

d 𝑥𝑛 +1 ,𝑥𝑛−1 
]𝑎2  

d(𝑥𝑛+1, 𝑥𝑛 ) ≤ [d( 𝑥𝑛 , 𝑥𝑛−1  )]𝑎1+𝑎2 , 

d(𝑥𝑛 , 𝑥𝑛+1) ≤ [𝑑(𝑥𝑛−1, 𝑥𝑛 )] ,                                                                                                                                

where h = 𝑎1 + 𝑎2 < 1, we get  d(𝑥𝑛 , 𝑥𝑛+1) ≤ 

[𝑑(𝑥𝑛−1, 𝑥𝑛 )] , 

Similarly, d(𝑥𝑛−1, 𝑥𝑛 ) ≤ [𝑑(𝑥𝑛−2, 𝑥𝑛−1)] , 

d(𝑥𝑛 , 𝑥𝑛+1) ≤ [𝑑(𝑥𝑛−2, 𝑥𝑛−1)]2
. 

Continue like this we get,  

d(𝑥𝑛 , 𝑥𝑛+1) ≤ [𝑑(𝑥0 , 𝑥1)]𝑛
 

For n > m, d(𝑥𝑛 , 𝑥𝑚 ) ≤ d(𝑥𝑛 , 𝑥𝑛−1) · d(𝑥𝑛−1, 𝑥𝑛−2) · 

· · d(𝑥𝑚 , 𝑥𝑚+1) 

                                  ≤ d(𝑥0 , 𝑥1) 
𝑛−1+𝑛−2+⋯𝑚

 

≤ d(𝑥0 , 𝑥1) 
𝑚

1−  . This implies d(𝑥𝑛 , 𝑥𝑚 ) →1(n, m 

→ ∞). 

Hence (𝑥𝑛 ) is a Cauchy sequence. By the 

multiplicative completeness of X, there is z ∈ 

X such that 𝑥𝑛  → z (n →∞). 

Now we claim that z = fz. 

d(fz, z) ≤ d(𝑥𝑛+1,z). d(𝑥𝑛+1, fz) 

≤ d(𝑥𝑛+1, z). d(𝑓𝑥𝑛 , fz) 

≤ d(𝑥𝑛+1, z). [d( 𝑥𝑛 , z )]𝑎1 .  [
d(𝑥𝑛 ,f𝑥𝑛 ) d(z,fz )

d 𝑥𝑛 ,z .d 𝑥𝑛 ,Tz .d(z,T𝑥𝑛 )
]𝑎2  

d(fz, z) ≤ 1implies that fz = z. Hence z is fixed 

point of f. 

Uniqueness can be easily found. 

 

Cor.1.Putting 𝑎2 =  0, gives Banach-

contraction[8] in the sense of multiplicative 

metric spaces. 

 

Theorem 2.6. Let (X, d) be a complete multiplicative metric space. Suppose the 

mapping  

f : X → X be a self- mapping satisfies the condition 

 d(fx,fy)≤ [𝑑(𝑥, 𝑦)]𝑎1 . [𝑑(𝑥, 𝑓𝑦)]𝑎2 . [𝑑(𝑓𝑥, 𝑦)]𝑎3 . [𝑑(𝑓𝑦, 𝑦)]𝑎4 . [𝑑(𝑓𝑥, 𝑥)]𝑎5 ,  

for all x, y ∈ X, where 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5  ≥ 0 and 𝑎1+ 2𝑎2+2𝑎3 + 𝑎4+𝑎5 < 1 

Then f has a unique fixed point in X. 

 

Proof. Let{𝑥𝑛 }be a sequence in X, defined as 

follows. 

Let 𝑥0 ∈ X, f(𝑥0) = 𝑥1,f(𝑥1) = 𝑥2,···,f(𝑥𝑛 ) = 𝑥𝑛+1,···. 

Consider 

d(𝑥𝑛, 𝑥𝑛+1) = d(T𝑥𝑛−1,T𝑥𝑛) 

                   ≤ 

[𝑑(𝑥𝑛−1 , 𝑥𝑛)]𝑎1 . [𝑑(𝑥𝑛−1, 𝑓𝑥𝑛)]𝑎2 . [𝑑(𝑓𝑥𝑛−1, 𝑥𝑛)]𝑎3 . [𝑑(𝑓𝑥𝑛 , 𝑥𝑛)]𝑎4 . [𝑑(𝑓𝑥𝑛−1, 𝑥𝑛−1)]𝑎5 

                   ≤ [𝑑(𝑥𝑛−1, 𝑥𝑛)]𝑎1 . [𝑑(𝑥𝑛−1, 𝑥𝑛+1)]𝑎2 . [𝑑(𝑥𝑛 , 𝑥𝑛)]𝑎3 . [𝑑(𝑥𝑛+1 , 𝑥𝑛)]𝑎4 . [𝑑(𝑥𝑛−1, 𝑥𝑛)]𝑎5 

   ≤ 
[𝑑(𝑥𝑛−1 , 𝑥𝑛 )]𝑎1 . [𝑑(𝑥𝑛−1 , 𝑥𝑛+1)]𝑎2 . [𝑑(𝑥𝑛 ,𝑥𝑛+1)]𝑎2 .  [𝑑(𝑥𝑛−1 , 𝑥𝑛 )]𝑎3 .  𝑑 𝑥𝑛 ,𝑥𝑛+1  𝑎3 . [𝑑(𝑥𝑛+1 , 𝑥𝑛 )]𝑎4 . [𝑑(𝑥𝑛−1 , 𝑥𝑛 )]𝑎5 

≤ [𝑑(𝑥𝑛−1, 𝑥𝑛)]𝑎1+𝑎2+𝑎3+𝑎5. [𝑑(𝑥𝑛+1, 𝑥𝑛)]𝑎2+𝑎3+𝑎4 

d(𝑥𝑛, 𝑥𝑛+1) ≤ [𝑑(𝑥𝑛−1 , 𝑥𝑛)], 

where h = 
𝑎1+𝑎2+𝑎3+𝑎5

1−(𝑎2+𝑎3+𝑎4)
 < 1. 

Similarly, d(𝑥𝑛−1, 𝑥𝑛 ) ≤ [𝑑(𝑥𝑛−2 , 𝑥𝑛−1)] , 

d(𝑥𝑛 , 𝑥𝑛+1) ≤ [𝑑(𝑥𝑛−2 , 𝑥𝑛−1)]2
. 

Continue like this we get,  

d(𝑥𝑛 , 𝑥𝑛+1) ≤ [𝑑(𝑥0 , 𝑥1)]𝑛
 

For n > m, d(𝑥𝑛 , 𝑥𝑚 ) ≤ d(𝑥𝑛 , 𝑥𝑛−1) · d(𝑥𝑛−1, 𝑥𝑛−2) · · · 

d(𝑥𝑚 , 𝑥𝑚+1) 

≤ d(𝑥0 , 𝑥1) 
𝑛−1+𝑛−2+⋯𝑚

 

 ≤ d(𝑥0 , 𝑥1) 
𝑚

1− . This implies d(𝑥𝑛 , 𝑥𝑚 ) →1(n, m → ∞). 

Hence (𝑥𝑛 ) is a Cauchy sequence. By the 

multiplicative completeness of X, there is z ∈ 

X such that 𝑥𝑛  → z (n →∞). 

Now we show that z is fixed point of f . 
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d(fz, z) ≤ d(f𝑥𝑛 ,fz). d(f𝑥𝑛z) 

 ≤ [𝑑(𝑧, 𝑥𝑛)]𝑎1 . [𝑑(𝑥𝑛 , 𝑓𝑧)]𝑎2 . [𝑑(𝑓𝑥𝑛 , 𝑧)]𝑎3 . [𝑑(𝑓𝑧, 𝑧)]𝑎4 . [𝑑(𝑓𝑥𝑛 , 𝑥𝑛)]𝑎5 

d(fz, z) ≤ [𝑑(𝑧, 𝑓𝑧)]𝑎2+𝑎4  gives fz = z, i.e., z is a fixed point of f. 

 

Uniqueness: Suppose  z, w (z ≠ w) be two 

fixed point of f, then  

d(z, w) = d(fz, fw) 

                  ≤ 
[𝑑(𝑧, 𝑤)]𝑎1 . [𝑑(𝑧, 𝑓𝑤)]𝑎2 . [𝑑(𝑓𝑧, 𝑤)]𝑎3 . [𝑑(𝑓𝑤, 𝑤)]𝑎4 . [𝑑(𝑓𝑧, 𝑧)]𝑎5 

d(z, w) ≤ [𝑑(𝑧, 𝑤)]𝑎1+𝑎2+𝑎3  this implies that d(z, 

w) = 1 i.e., z = w. 

Hence f has a unique fixed point . 

 

Cor.1.Putting 𝑎2 = 𝑎3 = 𝑎4 = 𝑎5  = 0 gives 

Banach-contraction[8].  

 

Cor.2.Putting 𝑎1 = 𝑎2 = 𝑎3 =  0,  𝑎4 = 𝑎5 gives 

Kannan-contraction[8].  

 

Cor.3.Putting 𝑎1 = 𝑎4 = 𝑎5 = 0,  𝑎2 = 𝑎3 gives 

Chatterjea-contraction[8].  

 

Cor.5.Putting 𝑎4 = 𝑎5 = 0, gives Isufati 

results[5] in the sense of multiplicative metric 

spaces.  

 

Cor.7.Putting 𝑎4 = 𝑎5 = 0, 𝑎2 = 𝑎3 gives Reich 

results[9] in the sense of multiplicative metric 

spaces.  

 

3. Application to the existence of solutions 

of multiplicative integral equations 

Let X = C([1,T];ℝ+) for sufficiently small T > 1 

be the set of continuous functions defined on 

closed interval [1,T] and d: X×X →ℝ+ be 

defined as  d(x, y) = sup
t∈[1,T]

 
𝑥(𝑡)

𝑦(𝑡)
  for x, y ∈ 𝑋.  

Then (X, d) is complete multiplicative metric 

spaces. 

Consider the multiplicative integral equation 

x(t)=u(t). (𝐾(𝑡, 𝑠)𝑓(𝑠, 𝑥(𝑠)))𝑑𝑠𝑡

1
,                                                                 

(3.1)   

and let F: X→X defined by  

F(x)(t)=u(t). (𝐾(𝑡, 𝑠)𝑓(𝑠, 𝑥(𝑠)))𝑑𝑠𝑡

1
                                                             

(3.2) 

We assume that  

(a)   f: [1,T] → ℝ+ is continuous; 

(b)   u: [1,T] → ℝ+ is continuous;       

(c)   K: [1,T] × ℝ+ → ℝ+ is continuous. 

(d) for every x, y ∈ 𝑋 ,  

 we have  
f (s,   x(s))

f (s,   y(s))
 ≤ 

((λ1)
 
𝑥(𝑠)

𝑦(𝑠)
 
. (λ2)

 
𝑥(𝑠)

𝐹𝑦 (𝑠)
 
. (λ3)

 
𝐹𝑥 (𝑠)

𝑦(𝑠)
 
. (λ4)

 
𝐹𝑦 (𝑠)

𝑦 (𝑠)
 
. (λ5)

 
𝐹𝑥 (𝑠)

𝑥(𝑠)
 
),  

where  λ𝑖  ≥ 0 , i = 1 to 5 and λ1+ 2λ2+2λ3 +

λ4+ λ5  < 1. 

(e)  𝑡 − 𝑡0  ≤ K, for K > 0 sufficiently small 𝐾λ𝑖  

<1, i = 1 to 5. 

 

Theorem 3.1. Under the assumptions (a) to 

(e), the integral equation (3.1) has a unique 

solution in X. 

 

Proof. Consider the mappings F: X→X 

defined by (3.2). Notice that the existence of a 

solution for  the multiplicative integral 

equation (3.1) is equivalent to the existence of 

a fixed point for the map F. 

By condition (d) , we have sup
t∈[1,T]

  
F (x)(t)

F (y)(t)
  = sup

t∈[1,T]
 

 
u(t). (𝐾(𝑡 ,𝑠)𝑓(𝑠,𝑥(𝑠)))𝑑𝑠𝑡

1

u(t). (𝐾(𝑡 ,𝑠)𝑓(𝑠,𝑦(𝑠)))𝑑𝑠𝑡
1

  = sup
t∈[1,T]

  
 (𝐾(𝑡 ,𝑠)𝑓(𝑠,𝑥(𝑠)))𝑑𝑠𝑡
1

 (𝐾(𝑡 ,𝑠)𝑓(𝑠,𝑦(𝑠)))𝑑𝑠𝑡
1

  

= sup
t∈[1,T]

  
 (𝑓(𝑠,𝑥(𝑠)))𝑑𝑠𝑡
1

 (𝑓(𝑠,𝑦(𝑠)))𝑑𝑠𝑡
1

  = sup
t∈[1,T]

( 
 𝑓(𝑠,𝑥(𝑠))

𝑡
1

 𝑓(𝑠,𝑦(𝑠))
𝑡

1

 )𝑑𝑠  ≤ sup
t∈[1,T]

 

(  
𝑓(𝑠,𝑥(𝑠))

𝑓(𝑠,𝑦(𝑠))
 

𝑡

1
)𝑑𝑠                      

≤ sup

t∈[1,T]
( ((λ1)

 
𝑥(𝑠)

𝑦 (𝑠)
 
. (λ2)

 
𝑥(𝑠)

𝐹𝑦 (𝑠)
 
. (λ3)

 
𝐹𝑥 (𝑠)

𝑦 (𝑠)
 
. (λ4)

 
𝐹𝑦 (𝑠)

𝑦 (𝑠)
 
. (λ5)

 
𝐹𝑥 (𝑠)

𝑥(𝑠)
 
) 

𝑡

1
)𝑑𝑠        by  (d) 

≤

( ( sup
t∈[1,T]

(λ1)
 
𝑥(𝑠)

𝑦 (𝑠)
 
. sup

t∈[1,T]
(λ2)

 
𝑥(𝑠)

𝐹𝑦 (𝑠)
 
. sup

t∈[1,T]
(λ3)

 
𝐹𝑥 (𝑠)

𝑦 (𝑠)
 
. sup

t∈[1,T]
(λ4)

 
𝐹𝑦 (𝑠)

𝑦 (𝑠)
 
. sup

t∈[1,T]
(λ5)

 
𝐹𝑥 (𝑠)

𝑥(𝑠)
 
) 

𝑡

1
)𝑑𝑠 

≤( ((λ1)
𝑠𝑢𝑝

𝑡∈[1,𝑇]
 
𝑥(𝑠)

𝑦(𝑠)
 𝑡

1
)𝑑𝑠 . ( ((λ2)

𝑠𝑢𝑝
𝑡∈[1,𝑇]

 
𝑥(𝑠)

𝐹𝑦 (𝑠)
 𝑡

1
)𝑑𝑠 .

 ( ((λ3)
𝑠𝑢𝑝

𝑡∈[1,𝑇]
 
𝐹𝑥 (𝑠)

𝑦(𝑠)
 𝑡

1
)𝑑𝑠 . ( ((λ4)

𝑠𝑢𝑝
𝑡∈[1,𝑇]

 
𝐹𝑦 (𝑠)

𝑦(𝑠)
 𝑡

1
)𝑑𝑠 .

 ( ((λ5)
𝑠𝑢𝑝

𝑡∈[1,𝑇]
 
𝐹𝑥 (𝑠)

𝑥(𝑠)
 𝑡

1
)𝑑𝑠 . 

≤( ((λ1)𝑑(𝑥 ,𝑦)𝑡

1
)𝑑𝑠 . ( ((λ2)𝑑(𝑥 ,𝐹𝑦 )𝑡

1
)𝑑𝑠 .

 ( ((λ3)𝑑(𝐹𝑥 ,𝑦)𝑡

1
)𝑑𝑠 . ( ((λ4)𝑑(𝐹𝑦 ,𝑦)𝑡

1
)𝑑𝑠 .

 ( ((λ5)𝑑(𝐹𝑥 ,𝑥)𝑡

1
)𝑑𝑠  

≤ ( (1)𝑑𝑠𝑡

1
)(λ1)𝑑(𝑥 ,𝑦)

. ( (1)𝑑𝑠𝑡

1
)(λ2)𝑑(𝑥 ,𝐹𝑦 )

.

 ( (1)𝑑𝑠𝑡

1
)(λ3)𝑑(𝐹𝑥 ,𝑦)

. ( (1)𝑑𝑠𝑡

1
)(λ4)𝑑(𝐹𝑦 ,𝑦 )

 

 ( (1)𝑑𝑠𝑡

1
)(λ5)𝑑(𝐹𝑥 ,𝑥)

. 

≤ ( 𝑡 − 𝑡0 )(λ1)𝑑(𝑥 ,𝑦)
. ( 𝑡 − 𝑡0 )(λ2)𝑑(𝑥 ,𝐹𝑦 )

. ( 𝑡 −

𝑡0)(λ3)𝑑(𝐹𝑥,𝑦).              
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 ( 𝑡 − 𝑡0 )(λ4)𝑑(𝐹𝑦 ,𝑦 )
. ( 𝑡 − 𝑡0 )(λ5)𝑑(𝐹𝑥 ,𝑥)

. 

≤ (𝐾)(λ1)𝑑(𝑥 ,𝑦)
. (𝐾)(λ2)𝑑(𝑥 ,𝐹𝑦 )

. (𝐾)(λ3)𝑑(𝐹𝑥 ,𝑦)
.

 (𝐾)(λ4)𝑑(𝐹𝑦 ,𝑦 )
. (𝐾)(λ5)𝑑(𝐹𝑥 ,𝑥)

,  from (e) 

≤(𝐾λ1 )𝑑(𝑥 ,𝑦) .  (𝐾λ2)𝑑(𝑥 ,𝐹𝑦 ). 

(𝐾λ3)𝑑(𝐹𝑥 ,𝑦). (𝐾λ4 )𝑑(𝐹𝑦 ,𝑦). (𝐾λ5 )𝑑(𝐹𝑥 ,𝑥) 

≤ 

(𝑑(𝑥, 𝑦))𝐾𝜆1
. (𝑑(𝑥, 𝐹𝑦))𝐾𝜆2

. (𝑑(𝐹𝑥, 𝑦))𝐾𝜆3
.

 (𝑑(𝐹𝑦, 𝑦))𝐾𝜆4
. (𝑑(𝐹𝑥, 𝑥))𝐾𝜆5

 as  

 𝐾λ𝑖  <1, i = 1 to 5. 

 

All conditions of the theorem 2.6 are satisfied 

and  hence the mapping F has a unique fixed 

point in X = C([1,T],ℝ+) of the multiplicative 

integral equation (3.1). 
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